Physics 745 - Group Theory

Solution Set 22

1. [10] It is rare we will actually use the representation matrices $\Gamma^{(j)}(R)$, but occasionally it is useful. We want to work out explicitly $\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x}))$, generated by the generators

$$
T_{a}=\frac{1}{2} \sigma_{a,} \quad \text { where } \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

We will write \mathbf{x} in the form $\hat{x}=x \hat{\mathbf{r}}$, where $\hat{\mathbf{r}}$ is a unit vector, and x is the magnitude of x.
(a) [3] Show that $(\hat{\mathbf{r}} \cdot \sigma)^{2}=1$, where 1 is the unit matrix, for any unit vector $\hat{\mathbf{r}}$.

Furthermore, find a simplification for $(\hat{\mathbf{r}} \cdot \sigma)^{n}$ for arbitrary positive integer n when \boldsymbol{n} is even or odd.

We simply write out the expression explicitly, writing $\hat{\mathbf{r}}=\left(r_{1}, r_{2}, r_{3}\right)$, so that

$$
(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{2}=\left(\begin{array}{cc}
r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & -r_{3}
\end{array}\right)\left(\begin{array}{cc}
r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & -r_{3}
\end{array}\right)=\left(\begin{array}{cc}
r_{3}^{2}+r_{1}^{2}+r_{2}^{2} & 0 \\
0 & r_{3}^{2}+r_{1}^{2}+r_{2}^{2}
\end{array}\right)=\mathbf{1}\left(\hat{\mathbf{r}}^{2}\right)=\mathbf{1}
$$

Now, if you have it raised to an even power, you will simply get $(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{2 n}=\mathbf{1}^{n}=\mathbf{1}$, while for an odd power, you will have $(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{2 n+1}=\mathbf{1}^{n}(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})=\hat{\mathbf{r}} \cdot \boldsymbol{\sigma}$. That's pretty simple.
(b) [4] Expand out the representation

$$
\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x}))=\exp (-i \mathbf{T} \cdot \mathbf{x})=\sum_{n=0}^{\infty} \frac{(-i \mathbf{T} \cdot \mathbf{x})^{n}}{n!}
$$

dividing it into even and odd terms. Simplify as much as possible
(c) [3] Show that $\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x}))=\mathbf{1} \cos \left(\frac{1}{2} x\right)-i(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma}) \sin \left(\frac{1}{2} x\right)$

We simply follow the instructions, and then divide it into even and odd terms:

$$
\begin{aligned}
\Gamma^{\left(\frac{1}{2}\right)}(R(\mathbf{x})) & =\sum_{n=0}^{\infty} \frac{(-i \mathbf{T} \cdot \mathbf{x})^{n}}{n!}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-i \frac{1}{2} \hat{\mathbf{r}} \cdot \boldsymbol{\sigma} x\right)^{n} \\
& =\sum_{n \text { even }}^{\infty} \frac{1}{n!}\left(-i \frac{1}{2} x\right)^{n}(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{n}+\sum_{n \text { odd }}^{\infty} \frac{1}{n!}\left(-i \frac{1}{2} x\right)^{n}(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})^{n} \\
& =\mathbf{1}\left[1-\frac{1}{2!}\left(\frac{1}{2} x\right)^{2}+\frac{1}{4!}\left(\frac{1}{2} x\right)^{4}-+\cdots\right]+(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})\left[-i\left(\frac{1}{2} x\right)+i \frac{1}{3!}\left(\frac{1}{2} x\right)^{3}-i \frac{1}{\left.5!\left(\frac{1}{2} x\right)^{5}+-\cdots\right]}\right. \\
& =\mathbf{1} \cos \left(\frac{1}{2} x\right)-i(\hat{\mathbf{r}} \cdot \boldsymbol{\sigma}) \sin \left(\frac{1}{2} x\right)
\end{aligned}
$$

