Physics 745 - Group Theory

Solution Set 25

1. [15] In the electric dipole approximation, the rate at which an atom decaying from one state to another by the emission of a photon is given by $\Gamma(I \rightarrow F)=\frac{4}{3} \alpha \omega_{I F}^{3}\left|\mathbf{r}_{F I}\right|^{2} / c^{2}$ where

$$
\mathbf{r}_{F I}=\langle F| \mathbf{r}|I\rangle
$$

The absolute value symbol means that $\left|\mathbf{r}_{F I}\right|^{2}$ contains not only a sum of the three components of r, but also the real and imaginary parts.
(a) [4] Demonstrate first that

$$
\left.\left|\mathbf{r}_{F I}\right|^{2}=\sum_{q=-1}^{1}\left|\langle F| r_{q}^{(1)}\right| I\right\rangle\left.\right|^{2}
$$

where $r_{q}^{(1)}$ are the three components of the spherical tensor corresponding to the vector operator r.

This is straightforward. We have

$$
\begin{aligned}
\left.\sum_{q=-1}^{1}\left|\langle F| r_{q}^{(1)}\right| I\right\rangle\left.\right|^{2} & \left.\left.\left.=\left|\langle F| r_{-1}^{(1)}\right| I\right\rangle\left.\right|^{2}+\left|\langle F| r_{0}^{(1)}\right| I\right\rangle\left.\right|^{2}+\left|\langle F| r_{+1}^{(1)}\right| I\right\rangle\left.\right|^{2} \\
& \left.\left.\left.=\frac{1}{2}\left|\langle F| r_{1}\right| I\right\rangle-\left.i\langle F| r_{2}|I\rangle\right|^{2}+\left|\langle F| r_{3}\right| I\right\rangle\left.\right|^{2}+\frac{1}{2}\left|-\langle F| r_{1}\right| I\right\rangle-\left.i\langle F| r_{2}|I\rangle\right|^{2} \\
& \left.\left.\left.\left.\left.=\frac{1}{2}\left|\langle F| r_{1}\right| I\right\rangle\left.\right|^{2}+\frac{1}{2}\left|\langle F| r_{2}\right| I\right\rangle\left.\right|^{2}+\left|\langle F| r_{3}\right| I\right\rangle\left.\right|^{2}+\frac{1}{2}\left|\langle F| r_{1}\right| I\right\rangle\left.\right|^{2}+\frac{1}{2}\left|\langle F| r_{2}\right| I\right\rangle\left.\right|^{2} \\
& =|\langle F| \mathbf{r}| I\rangle\left.\right|^{2}=\left|\mathbf{r}_{F I}\right|^{2}
\end{aligned}
$$

(b) [4] An atom in the state $|n j m\rangle$ with $\boldsymbol{j}=3 / 2$ is about to decay via dipole radiation. What possible j ' values might be allowed for the final state $\left|n^{\prime} j^{\prime} m^{\prime}\right\rangle$?

According to the Wigner Eckart theorem, the matrix elements we need will be of the form

$$
\left\langle n^{\prime} j^{\prime} m^{\prime}\right| r_{q}^{(1)}\left|n \frac{3}{2} m\right\rangle=\frac{\left\langle 1 \frac{3}{2} ; q m \mid j^{\prime} m^{\prime}\right\rangle}{\sqrt{2 j^{\prime}+1}}\left\langle n^{\prime} j^{\prime}\|r\| n j\right\rangle
$$

For this rate to be non-vanishing, j ' must be in the range from $\frac{3}{2}+1, \ldots,\left|\frac{3}{2}-1\right|=\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$, so these are the three possibilities.
(c) [7] The atom is actually going to decay to a state with $\boldsymbol{j}^{\prime}=1 / 2$. Using the Wigner Eckart Theorem, find the relative rate of decay

$$
\Gamma\left(n j m \rightarrow n^{\prime} j^{\prime} m^{\prime}\right)
$$

for all non-vanishing possible values of \boldsymbol{m} and \boldsymbol{m} '.

We need the Clebsch-Gordan coefficients $\left\langle 1 \frac{3}{2} ; q m \left\lvert\, \frac{1}{2} m^{\prime}\right.\right\rangle$. The Clebsch routine from the web is happy to help us out. The only non-zero ones will be when $m^{\prime}=q+m$, so these work out to six possibilities total. We calculate them using commands like this:
$>$ for q from -1 to 1 do clebsch(1,3/2, $q, 1 / 2-q, 1 / 2,1 / 2)$; clebsch(1,3/2,q,-1/2-q,1/2,-1/2); end do;

$$
\begin{aligned}
& \left\langle 1 \frac{3}{2} ;-1, \left.\frac{3}{2} \right\rvert\, \frac{1}{2}, \frac{1}{2}\right\rangle=\left\langle 1 \frac{3}{2} ; 1, \left.-\frac{3}{2} \right\rvert\, \frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{1}{2}}, \\
& \left\langle 1 \frac{3}{2} ; 1,-\frac{1}{2} \left\lvert\, \frac{1}{2} \frac{1}{2}\right.\right\rangle=\left\langle 1 \frac{3}{2} ;-1, \left.\frac{1}{2} \right\rvert\, \frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{1}{6}} \\
& \left\langle 1 \frac{3}{2} ; 0, \left.\frac{1}{2} \right\rvert\, \frac{1}{2}, \frac{1}{2}\right\rangle=\left\langle 1 \frac{3}{2} ; 0, \left.-\frac{1}{2} \right\rvert\, \frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{1}{3}}
\end{aligned}
$$

The probabilities for these various rates is therefore proportional to

$$
\begin{gathered}
\Gamma\left(\frac{3}{2} \frac{3}{2} \rightarrow \frac{1}{2} \frac{1}{2}\right), \Gamma\left(\frac{3}{2},-\frac{3}{2} \rightarrow \frac{1}{2},-\frac{1}{2}\right) \propto \frac{1}{2}, \\
\Gamma\left(\frac{3}{2} \frac{1}{2} \rightarrow \frac{1}{2} \frac{1}{2}\right), \Gamma\left(\frac{3}{2},-\frac{1}{2} \rightarrow \frac{1}{2},-\frac{1}{2}\right) \propto \frac{1}{3}, \\
\Gamma\left(\frac{3}{2},-\frac{1}{2} \rightarrow \frac{1}{2}, \frac{1}{2}\right), \Gamma\left(\frac{3}{2} \frac{1}{2} \rightarrow \frac{1}{2},-\frac{1}{2}\right) \propto \frac{1}{6} .
\end{gathered}
$$

Or, doubling everything, another way to put this would be in a little probability table like the one at right:

$\left\|\psi_{I}\right\rangle=$	$\left\|\frac{3}{2}, \frac{3}{2}\right\rangle$	$\left\|\frac{3}{2}, \frac{1}{2}\right\rangle$	$\left\|\frac{3}{2},-\frac{1}{2}\right\rangle$	$\left\|\frac{3}{2},-\frac{3}{2}\right\rangle$
$\left\|\psi_{F}\right\rangle=\left\|\frac{1}{2} \frac{1}{2}\right\rangle$	1	$\frac{2}{3}$	$\frac{1}{3}$	0
$\left\|\psi_{F}\right\rangle=\left\|\frac{1}{2},-\frac{1}{2}\right\rangle$	0	$\frac{1}{3}$	$\frac{2}{3}$	1

