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1. [15] In the electric dipole approximation, the rate at which an atom decaying 

from one state to another by the emission of a photon is given by 
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 The absolute value symbol means that 2
FIr  contains not only a sum of the three 

components of r, but also the real and imaginary parts. 
(a) [4] Demonstrate first that  
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 where ( )1
qr  are the three components of the spherical tensor corresponding to 

the vector operator r. 
 
 This is straightforward.  We have 
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(b) [4] An atom in the state njm  with j = 3/2 is about to decay via dipole 

radiation.  What possible j’ values might be allowed for the final state 
n j m′ ′ ′ ? 

 
 According to the Wigner Eckart theorem, the matrix elements we need will be of 
the form 
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For this rate to be non-vanishing, j’ must be in the range from 3 3 5 3 1
2 2 2 2 21, , 1 , ,+ − =… , so 

these are the three possibilities. 
 
 



(c) [7] The atom is actually going to decay to a state with j’ = ½.  Using the 
Wigner Eckart Theorem, find the relative rate of decay 

( )njm n j m′ ′ ′Γ →  

 for all non-vanishing possible values of m and m’.   
 
 We need the Clebsch-Gordan coefficients 3 1

2 21 ;qm m′ .  The Clebsch routine 
from the web is happy to help us out.  The only non-zero ones will be when m q m′ = + , 
so these work out to six possibilities total.  We calculate them using commands like this: 
> for q from -1 to 1 do clebsch(1,3/2,q,1/2-q,1/2,1/2);    
  clebsch(1,3/2,q,-1/2-q,1/2,-1/2); end do; 
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The probabilities for these various rates is therefore proportional to 
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Or, doubling everything, another way 
to put this would be in a little 
probability table like the one at right: 
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