Physics 745 - Group Theory

Solution Set 27

1. [5] This problem has to do with demonstrating that according the isospin symmetry, the three $|\Sigma\rangle$'s all have the same mass.
(a) [2] Work out the effects of the isospin operators $\mathcal{I}_{ \pm}$on all three of the $|\Sigma\rangle$ states.

These are in an isospin 1 state, so we have

$$
\begin{array}{lll}
\mathcal{I}_{+}\left|\Sigma^{-}\right\rangle=\sqrt{2}\left|\Sigma^{0}\right\rangle, & \mathcal{I}_{+}\left|\Sigma^{0}\right\rangle=\sqrt{2}\left|\Sigma^{+}\right\rangle, & \mathcal{I}_{+}\left|\Sigma^{+}\right\rangle=0, \\
\mathcal{I}_{-}\left|\Sigma^{+}\right\rangle=\sqrt{2}\left|\Sigma^{0}\right\rangle, & \mathcal{I}_{-}\left|\Sigma^{0}\right\rangle=\sqrt{2}\left|\Sigma^{-}\right\rangle, & \mathcal{I}_{-}\left|\Sigma^{-}\right\rangle=0 .
\end{array}
$$

(b) [3] Assuming that isospin commutes with the mass portion of the Hamiltonian, show that all three of the $|\Sigma\rangle$'s have the same mass.

$$
\begin{gathered}
\left\langle\Sigma^{+}\right| H\left|\Sigma^{+}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Sigma^{+}\right| H \mathcal{I}_{+}\left|\Sigma^{0}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Sigma^{+}\right| \mathcal{I}_{+} H\left|\Sigma^{0}\right\rangle=\left\langle\Sigma^{0}\right| H\left|\Sigma^{0}\right\rangle \\
=\frac{1}{\sqrt{2}}\left\langle\Sigma^{0}\right| H \mathcal{I}_{+}\left|\Sigma^{-}\right\rangle=\frac{1}{\sqrt{2}}\left\langle\Sigma^{0}\right| \mathcal{I}_{+} H\left|\Sigma^{-}\right\rangle=\left\langle\Sigma^{-}\right| H\left|\Sigma^{-}\right\rangle, \\
m_{\Sigma^{+}}=m_{\Sigma^{0}}=m_{\Sigma^{-}} .
\end{gathered}
$$

2. [10] There is an excited set of two baryons $\left|N^{+}\right\rangle$and $\left|N^{0}\right\rangle$ that have the same isospin properties of the neutron and proton. They can decay, in principle, into a $|\Delta \pi\rangle$ combination of two particles.
(a) [4] Suppose that the Hamiltonian that performs this transition takes the form

$$
H\left|N^{+}\right\rangle=a\left|\Delta^{++} ; \pi^{-}\right\rangle+b\left|\Delta^{+} ; \pi^{0}\right\rangle+c\left|\Delta^{0} ; \pi^{+}\right\rangle
$$

Find the relative sizes of the factors a, b, and c. I recommend doing this by letting \mathcal{I}_{+}act on both sides.

Following the suggestion, we have

$$
\begin{aligned}
\mathcal{I}_{+} H\left|N^{+}\right\rangle & =a \mathcal{I}_{+}\left|\Delta^{++} ; \pi^{-}\right\rangle+b \mathcal{I}_{+}\left|\Delta^{+} ; \pi^{0}\right\rangle+c \mathcal{I}_{+}\left|\Delta^{0} ; \pi^{+}\right\rangle, \\
0 & =\sqrt{2} a\left|\Delta^{++} ; \pi^{0}\right\rangle+\sqrt{3} b\left|\Delta^{++} ; \pi^{0}\right\rangle+\sqrt{2} b\left|\Delta^{+} ; \pi^{+}\right\rangle+2 c\left|\Delta^{+} ; \pi^{+}\right\rangle, \\
0 & =(\sqrt{2} a+\sqrt{3} b)\left|\Delta^{++} ; \pi^{0}\right\rangle+(\sqrt{2} b+2 c)\left|\Delta^{+} ; \pi^{+}\right\rangle
\end{aligned}
$$

The coefficients of each of these states must vanish, so we find

$$
a=-\sqrt{\frac{3}{2}} b \quad \text { and } \quad c=-\sqrt{\frac{1}{2}} b
$$

so that we have

$$
H\left|N^{+}\right\rangle=-\sqrt{\frac{3}{2}} b\left|\Delta^{++} ; \pi^{-}\right\rangle+b\left|\Delta^{+} ; \pi^{0}\right\rangle-b \sqrt{\frac{1}{2}}\left|\Delta^{0} ; \pi^{+}\right\rangle
$$

(b) [2] Calculate the relative rate for the decay rates $\Gamma\left(N^{+} \rightarrow \Delta^{++} \pi^{-}\right)$, $\Gamma\left(N^{+} \rightarrow \Delta^{+} \pi^{0}\right)$, and $\Gamma\left(N^{+} \rightarrow \Delta^{0} \pi^{+}\right)$.

As usual, we simply have

$$
\Gamma\left(N^{+} \rightarrow \Delta^{++} \pi^{-}\right) \propto \frac{3}{2} b^{2}, \quad \Gamma\left(N^{+} \rightarrow \Delta^{+} \pi^{0}\right) \propto b^{2}, \quad \Gamma\left(N^{+} \rightarrow \Delta^{0} \pi^{+}\right) \propto \frac{1}{2} b^{2}
$$

So they are in the ratio 3:2:1.
(c) [4] Now I want you to figure out how the N^{0} decays. Using isospin symmetry, determine that the same interaction discussed in part (a) also leads to three decay processes for the N^{0}. Find the relative probability amplitudes for these processes, and predict the corresponding decay rates, and show how they relate to those found in part (b).

We start by letting \mathcal{I}_{-}act on both sides, to yield

$$
\begin{aligned}
\mathcal{I}_{-} H\left|N^{+}\right\rangle & =-\sqrt{\frac{3}{2}} b \mathcal{I}_{-}\left|\Delta^{++} ; \pi^{-}\right\rangle+b \mathcal{I}_{-}\left|\Delta^{+} ; \pi^{0}\right\rangle-b \sqrt{\frac{1}{2}} \mathcal{I}_{-}\left|\Delta^{0} ; \pi^{+}\right\rangle, \\
H\left|N^{0}\right\rangle= & -\sqrt{\frac{3}{2}} \sqrt{3} b\left|\Delta^{+} ; \pi^{-}\right\rangle+\sqrt{2} b\left|\Delta^{+} ; \pi^{-}\right\rangle+2 b\left|\Delta^{0} ; \pi^{0}\right\rangle-b \sqrt{\frac{1}{2}} \sqrt{2}\left|\Delta^{0} ; \pi^{0}\right\rangle \\
& -b \sqrt{\frac{1}{2}} \sqrt{3}\left|\Delta^{-} ; \pi^{+}\right\rangle \\
& =-\sqrt{\frac{1}{2}} b\left|\Delta^{+} ; \pi^{-}\right\rangle+b\left|\Delta^{0} ; \pi^{0}\right\rangle-\sqrt{\frac{3}{2}} b\left|\Delta^{-} ; \pi^{+}\right\rangle
\end{aligned}
$$

and the rates come out to

$$
\Gamma\left(N^{0} \rightarrow \Delta^{+} \pi^{-}\right) \propto \frac{1}{2} b^{2}, \quad \Gamma\left(N^{0} \rightarrow \Delta^{0} \pi^{0}\right) \propto b^{2}, \quad \Gamma\left(N^{0} \rightarrow \Delta^{-} \pi^{+}\right) \propto \frac{3}{2} b^{2}
$$

The ratios are 1:2:3 this time, or putting it all together, we have

$$
\begin{aligned}
& \frac{\Gamma\left(N^{+} \rightarrow \Delta^{++} \pi^{-}\right)}{3}=\frac{\Gamma\left(N^{+} \rightarrow \Delta^{+} \pi^{0}\right)}{2}=\Gamma\left(N^{+} \rightarrow \Delta^{0} \pi^{+}\right) \\
& =\Gamma\left(N^{0} \rightarrow \Delta^{+} \pi^{-}\right)=\frac{\Gamma\left(N^{0} \rightarrow \Delta^{0} \pi^{0}\right)}{2}=\frac{\Gamma\left(N^{0} \rightarrow \Delta^{-} \pi^{+}\right)}{3}
\end{aligned}
$$

