Physics 745 - Group Theory

Solution Set 31

1. [10] The $\Sigma^{* 0}$ is part of the 10 of $\operatorname{SU}(3)$. There are four possible decays that conserve charge and hypercharge and are kinematically allowed (that means they don't violate conservation of energy and momentum): $\Sigma^{0} \pi^{0}, \Sigma^{+} \pi^{-}, \Sigma^{-} \pi^{+}$, and $\Lambda \pi^{0}$. Indeed, these decay modes represent the overwhelming majority of the decay modes for the Σ^{*}.
(a) [7] In each of the four cases, work out the corresponding matrix element $\langle B M| H\left|\Sigma^{* 0}\right\rangle$.

We start with equation (4.43), which says

$$
\langle B M| H\left|B^{*}\right\rangle=a v_{l}^{\dagger i} u_{m}^{\dagger j} w^{k l m} \varepsilon_{i j k}
$$

We then simply plug in the appropriate numbers in each case for the matrix elements, which we obtain from equations (4.25), (4.27), and (4.28). We start by noting that the $\Sigma^{* 0}$ is the worst possible case; it has six different componets, all of which have indices 123 in some order and value $\frac{1}{\sqrt{6}}$. With the charged final states, there is only one term in each case, and we have

$$
\begin{aligned}
& \left\langle\Sigma^{+} \pi^{-}\right| H\left|\Sigma^{* 0}\right\rangle=a v_{1}^{\dagger 2} u_{2}^{\dagger 1} w^{k 12} \varepsilon_{21 k}=a w^{312} \varepsilon_{213}=a \frac{1}{\sqrt{6}}(-1)=-\frac{1}{\sqrt{6}} a, \\
& \left\langle\Sigma^{-} \pi^{+}\right| H\left|\Sigma^{* 0}\right\rangle=a v_{2}^{\dagger 1} u_{1}^{\dagger 2} w^{k 21} \varepsilon_{12 k}=a w^{321} \varepsilon_{123}=a \frac{1}{\sqrt{6}}(1)=\frac{1}{\sqrt{6}} a .
\end{aligned}
$$

Those were the easy ones. For $\Sigma^{0} \pi^{0}$, we note that each of them is diagonal, but we can't pick the same index each time, because if we do the $\varepsilon_{i j k}$ will vanish, so there are effectively only two terms

$$
\begin{aligned}
\left\langle\Sigma^{0} \pi^{0}\right| H\left|\Sigma^{* 0}\right\rangle & =a\left(v^{\dagger}\right)_{1}^{1}\left(u^{\dagger}\right)_{2}^{2} w^{k 12} \varepsilon_{12 k}+a\left(v^{\dagger}\right)_{2}^{2}\left(u^{\dagger}\right)_{1}^{1} w^{k 21} \varepsilon_{21 k} \\
& =a\left(\frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}}\right) w^{312} \varepsilon_{123}+a\left(-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right) w^{321} \varepsilon_{213}=-\frac{1}{2} a\left(\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{6}}\right)=0 .
\end{aligned}
$$

For the $\Lambda \pi^{0}$, it is a little more complicated. Once again, we must choose the indices to not match, but this time that allows a lot more possibilities.

$$
\begin{aligned}
\left\langle\Lambda^{0} \pi^{0}\right| H\left|\Sigma^{* 0}\right\rangle & =a\left[u_{1}^{\dagger 1}\left(v_{2}^{\dagger 2} w^{k 21} \varepsilon_{21 k}+v_{3}^{\dagger 3} w^{k 31} \varepsilon_{31 k}\right)+u_{2}^{\dagger 2}\left(v_{1}^{\dagger 1} w^{k 12} \varepsilon_{12 k}+v_{3}^{\dagger 3} w^{k 32} \varepsilon_{32 k}\right)\right] \\
& =a\left[\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{6}} w^{321} \varepsilon_{213}-\frac{2}{\sqrt{6}} w^{231} \varepsilon_{312}\right)-\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{6}} w^{312} \varepsilon_{123}-\frac{2}{\sqrt{6}} w^{132} \varepsilon_{321}\right)\right] \\
& =a\left[\frac{1}{\sqrt{2}}\left(-\frac{3}{6}\right)-\frac{1}{\sqrt{2}}\left(\frac{3}{6}\right)\right]=-\frac{1}{\sqrt{2}} a
\end{aligned}
$$

(b) [3] Which of the four "allowed" decays does not actually occur? For each of the other three cases, make a naïve prediction of the relative rate for the decay $\Gamma\left(\Sigma^{* 0} \rightarrow B M\right)$, and predict the fraction that each decay occurs, which is the decay rate for a given channel divided by the total. (This is called the branching ratio. Because the Λ is noticeably lighter than the Σ 's, the $\Lambda \pi^{0}$ mode actually is enhanced a bit compared to the naïve prediction).

Obviously, our prediction is that the $\Sigma^{0} \pi^{0}$ mode does not occur. For the other three rates, we would predict

$$
\Gamma\left(\Sigma^{* 0} \rightarrow \Sigma^{+} \pi^{-}\right)=\Gamma\left(\Sigma^{* 0} \rightarrow \Sigma^{-} \pi^{+}\right)=\frac{1}{3} \Gamma\left(\Sigma^{* 0} \rightarrow \Lambda^{0} \pi^{0}\right)
$$

This would predict that the decay fractions are $20 \%, 20 \%$, and 60%. But the $\Sigma \pi$ modes barely have enough energy to make this possible, and the actual branching fraction is about $6 \%, 6 \%$, and 88%.
2. [10] The $\eta_{c 0}$ is a heavy, neutral, $\mathrm{SU}(3)$ singlet meson. Among its many decay modes, it can decay to two light mesons, $\eta_{c 0} \rightarrow M^{\prime} M$.
(a) [4] Suppose we write the matrix elements for the M and M^{\prime} as $|M\rangle=w_{j}^{i}\left|M_{i}^{j}\right\rangle$ and $\left|M^{\prime}\right\rangle=u_{j}^{i}\left|M_{i}^{j}\right\rangle$. Write down the form of all possible non-vanishing terms that appear in

$$
\left\langle M^{\prime} M\right| H\left|\eta_{c 0}\right\rangle
$$

The $\eta_{c 0}$ has no indices associated with it, because it is an $\mathrm{SU}(3)$ singlet.

The most general form this matrix element might take would be

$$
\left\langle M^{\prime} M\right| H\left|\eta_{c 0}\right\rangle=a u_{i}^{\dagger j} w_{j}^{\dagger i}
$$

This is because we have one index up and one index down, and we can't contract an index on u or w with another index on u or w. This makes it simple.
(b) [3] Calculate the relative size of the matrix element for $\left|M^{\prime} M\right\rangle=\left|\pi^{0} \pi^{0}\right\rangle$, $\left|\pi^{ \pm} \pi^{\mp}\right\rangle,\left|K^{ \pm} K^{\mp}\right\rangle,\left|K^{0} \bar{K}^{0}\right\rangle,\left|\bar{K}^{0} K^{0}\right\rangle$, and $|\eta \eta\rangle$ (eight cases in all).

This is straightforward. We simply plug everything in, and only write those terms that don't vanish.

$$
\begin{aligned}
& \left\langle\pi^{0} \pi^{0}\right| H\left|\eta_{c 0}\right\rangle=a u_{1}^{\dagger 1} w_{1}^{\dagger 1}+a u_{2}^{\dagger 2} w_{2}^{\dagger 2}=a\left(\frac{1}{2}+\frac{1}{2}\right)=a, \\
& \left\langle\pi^{+} \pi^{-}\right| H\left|\eta_{c 0}\right\rangle=a u_{1}^{\dagger 2} w_{2}^{\dagger 1}=a, \quad\left\langle\pi^{-} \pi^{+}\right| H\left|\eta_{c 0}\right\rangle=a u_{2}^{\dagger 1} w_{1}^{\dagger 2}=a, \\
& \left\langle K^{+} K^{-}\right| H\left|\eta_{c 0}\right\rangle=a u_{1}^{\dagger 3} w_{3}^{\dagger 1}=a, \quad\left\langle K^{-} K^{+}\right| H\left|\eta_{c 0}\right\rangle=a u_{3}^{\dagger 1} w_{1}^{\dagger 3}=a, \\
& \left\langle K^{0} \bar{K}^{0}\right| H\left|\eta_{c 0}\right\rangle=a u_{2}^{\dagger 3} w_{3}^{\dagger 2}=a, \quad\left\langle\bar{K}^{0} K^{0}\right| H\left|\eta_{c 0}\right\rangle=a u_{3}^{\dagger 2} w_{2}^{\dagger 3}=a, \\
& \langle\eta \eta| H\left|\eta_{c 0}\right\rangle=a u_{1}^{\dagger 1} w_{1}^{\dagger 1}+a u_{2}^{\dagger 2} w_{2}^{\dagger 2}+a u_{3}^{\dagger 3} w_{3}^{\dagger 3}=a\left(\frac{1}{6}+\frac{1}{6}+\frac{4}{6}\right)=a .
\end{aligned}
$$

(c) [3] The mesons are so light that their relative masses are irrelevant. Predict the relative decay rates for $\Gamma\left(\eta_{c 0} \rightarrow \pi^{0} \pi^{0}\right), \Gamma\left(\eta_{c 0} \rightarrow \pi^{+} \pi^{-}\right), \Gamma\left(\eta_{c 0} \rightarrow K^{0} \bar{K}^{0}\right)$, $\Gamma\left(\eta_{c 0} \rightarrow K^{+} K^{-}\right)$, and $\Gamma\left(\eta_{c 0} \rightarrow \eta \eta\right)$. In some cases, you will have to add the results of two different decay rates, since $\Gamma(A \rightarrow B C)$ is really the sum of $\Gamma(A \rightarrow B C)$ and $\Gamma(A \rightarrow C B)$.

The naive decay rates are that they will be all equal. Without running through the details, this isn't exactly right, because effectively some of the decays like $\Gamma\left(\eta_{c 0} \rightarrow \pi^{+} \pi^{-}\right)$are actually the sums of two decays. We therefore predict

$$
\Gamma\left(\eta_{c 0} \rightarrow \pi^{0} \pi^{0}\right)=\frac{\Gamma\left(\eta_{c 0} \rightarrow \pi^{+} \pi^{-}\right)}{2}=\frac{\Gamma\left(\eta_{c 0} \rightarrow K^{0} \bar{K}^{0}\right)}{2}=\frac{\Gamma\left(\eta_{c 0} \rightarrow K^{+} K^{-}\right)}{2}=\Gamma\left(\eta_{c 0} \rightarrow \eta \eta\right)
$$

