Physics 745 - Group Theory

Solution Set 32

1. [15] The group $\mathbf{S O}(4)$ has six generators, which can be chosen to be

$$
\begin{aligned}
& L_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad L_{2}=\left(\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad L_{3}=\left(\begin{array}{cccc}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& K_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right), \quad K_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right), \quad K_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right) .
\end{aligned}
$$

These can be shown to satisfy the commutation relations

$$
\left[L_{a}, L_{b}\right]=i \varepsilon_{a b c} L_{c}, \quad\left[L_{a}, K_{b}\right]=i \varepsilon_{a b c} K_{c}, \quad\left[K_{a}, K_{b}\right]=i \varepsilon_{a b c} L_{c} .
$$

(a) [1] This group is rank two, so we can pick two of these matrices to be mutually commuting. If I pick $H_{1}=L_{3}$, what should I pick for H_{2} ?

Obviously, K_{3} commutes with L_{3}, so the logical choice is $H_{2}=K_{3}$.
(b) [5] Now, combine the remaining four operators into pairs, which I call $L_{ \pm}$ and $K_{ \pm}$, having the property

$$
\left[H_{1}, L_{ \pm}\right]= \pm L_{ \pm} \quad \text { and } \quad\left[H_{1}, K_{ \pm}\right]= \pm K_{ \pm}
$$

I'm not going to tell you how to do this, you have to guess for yourself.
The logical thing to try would be something like $L_{ \pm}=L_{1} \pm i L_{2}$ and $K_{ \pm}=K_{1} \pm i K_{2}$. In the spirit of keeping things orthonormal, I will throw in a factor of $1 / \sqrt{2}$, so

$$
L_{ \pm}=\frac{1}{\sqrt{2}}\left(L_{1} \pm i L_{2}\right) \quad \text { and } \quad K_{ \pm}=\frac{1}{\sqrt{2}}\left(K_{1} \pm i K_{2}\right) .
$$

Then it is easy to see that

$$
\begin{aligned}
& {\left[L_{3}, L_{ \pm}\right]=\frac{1}{\sqrt{2}}\left[L_{3}, L_{1} \pm i L_{2}\right]=\frac{1}{\sqrt{2}}\left(i L_{2} \mp i^{2} L_{1}\right)= \pm \frac{1}{\sqrt{2}}\left(L_{1} \pm i L_{2}\right)= \pm L_{ \pm},} \\
& {\left[L_{3}, K_{ \pm}\right]=\frac{1}{\sqrt{2}}\left[L_{3}, K_{1} \pm i K_{2}\right]=\frac{1}{\sqrt{2}}\left(i K_{2} \mp i^{2} K_{1}\right)= \pm \frac{1}{\sqrt{2}}\left(K_{1} \pm i K_{2}\right)= \pm K_{ \pm} .}
\end{aligned}
$$

(c) [6] Unfortunately the operators you found in part (b) probably do not have simple commutation relations with H_{2}. Combine $L_{ \pm}$with $K_{ \pm}$to make two new operators, which I called $E_{ \pm}$and $F_{ \pm}$, such that the commutation relations will always be proportional, i.e.,

$$
\left[H_{1}, E_{ \pm}\right] \propto E_{ \pm}, \quad\left[H_{2}, E_{ \pm}\right] \propto E_{ \pm}, \quad\left[H_{1}, F_{ \pm}\right] \propto F_{ \pm}, \quad\left[H_{2}, F_{ \pm}\right] \propto F_{ \pm} .
$$

First, are we sure these don't work? Let's check them. We don't have the commutator $\left[K_{a}, L_{b}\right]$, but this is $\left[K_{a}, L_{b}\right]=-\left[L_{b}, K_{a}\right]=-i \varepsilon_{b a c} K_{c}=i \varepsilon_{a b c} K_{c}$. So we have

$$
\begin{aligned}
& {\left[K_{3}, L_{ \pm}\right]=\frac{1}{\sqrt{2}}\left[K_{3}, L_{1} \pm i L_{2}\right]=\frac{1}{\sqrt{2}}\left(i K_{2} \mp i^{2} K_{1}\right)= \pm \frac{1}{\sqrt{2}}\left(K_{1} \pm i K_{2}\right)= \pm K_{ \pm},} \\
& {\left[K_{3}, K_{ \pm}\right]=\frac{1}{\sqrt{2}}\left[K_{3}, K_{1} \pm i K_{2}\right]=\frac{1}{\sqrt{2}}\left(i L_{2} \mp i^{2} L_{1}\right)= \pm \frac{1}{\sqrt{2}}\left(L_{1} \pm i L_{2}\right)= \pm L_{ \pm} .}
\end{aligned}
$$

Nope, they didn't work. But if we add and then subtract these two formulas, we see that

$$
\left[K_{3}, L_{ \pm}+K_{ \pm}\right]= \pm\left(K_{ \pm}+L_{ \pm}\right) \quad \text { and } \quad\left[K_{3}, L_{ \pm}-K_{ \pm}\right]= \pm\left(K_{ \pm}-L_{ \pm}\right) .
$$

If we now define

$$
\begin{aligned}
& E_{ \pm}=\frac{1}{\sqrt{2}}\left(L_{ \pm}+K_{ \pm}\right)=\frac{1}{2}\left(L_{1}+K_{1} \pm i L_{2} \pm i K_{2}\right) \\
& F_{ \pm}=\frac{1}{\sqrt{2}}\left(L_{ \pm}+K_{ \pm}\right)=\frac{1}{2}\left(L_{1}-K_{1} \pm i L_{2} \mp i K_{2}\right)
\end{aligned}
$$

Then it is easy to see that

$$
\begin{aligned}
& {\left[H_{1}, E_{ \pm}\right]=\frac{1}{\sqrt{2}}\left[L_{3},\left(L_{ \pm}+K_{ \pm}\right)\right]= \pm \frac{1}{\sqrt{2}}\left(L_{ \pm}+K_{ \pm}\right)= \pm E_{ \pm}, \quad\left[H_{2}, E_{ \pm}\right]= \pm \frac{1}{\sqrt{2}}\left(L_{ \pm}+K_{ \pm}\right)= \pm E_{ \pm},} \\
& {\left[H_{1}, E_{ \pm}\right]=\frac{1}{\sqrt{2}}\left[L_{3},\left(L_{ \pm}-K_{ \pm}\right)\right]= \pm \frac{1}{\sqrt{2}}\left(L_{ \pm}-K_{ \pm}\right)= \pm F_{ \pm}, \quad\left[H_{2}, F_{ \pm}\right]=\mp \frac{1}{\sqrt{2}}\left(L_{ \pm}-K_{ \pm}\right)=\mp F_{ \pm} .}
\end{aligned}
$$

So we've succeeded.
(d) [3] What are the roots of this group? Make a root diagram. Don't forget the roots corresponding to H_{1} and H_{2} !

The four non-zero roots are $(\pm 1, \pm 1)$ for the E 's and $(\pm 1, \mp 1)$ for the F 's. There are also two zero roots. A root diagram appears at right.

Though we weren't asked for it, the positive roots are $(1, \pm 1)$, which are also the simple roots. Since these roots are
 perpendicular, the Dynkin diagram is just two circles, as sketched at right. From this we can deduce that $\mathrm{SO}(4)=\mathrm{SU}(2) \times \mathrm{SU}(2)$.

