Physics 745 - Group Theory

Solution Set 33

1. The group $S O(5)$ has the Dynkin diagram sketched at right.

The shorter root can be chosen to be $s=(0,1)$.

(a) What is the length of the longer root r ? Give the coordinates of r.

The longer root will be $\sqrt{2}$ longer than \mathbf{s}, and it must be at 135° angle compared to it. Therefore, the longer root will be of length $\sqrt{2}$ and have coordinates

$$
\mathbf{r}=(1,-1) .
$$

(b) Use the rules described in class to determine for what positive integers \boldsymbol{n} the quantities $r+n s$ and $s+n \mathbf{r}$ are roots. Write them all out in coordinates.

We can only add simple roots, we can't subtract them. Since $2 \mathbf{r} \cdot \mathbf{s} / \mathbf{r}^{2}=-1$, we can only add \mathbf{r} to \mathbf{s} once. Since $2 \mathbf{r} \cdot \mathbf{s} / \mathbf{s}^{2}=-2$, we can add \mathbf{s} to \mathbf{r} twice. This yields two new roots, namely,

$$
\mathbf{r}+\mathbf{s}=\mathbf{s}+\mathbf{r}=(1,0) \quad \text { and } \quad \mathbf{r}+2 \mathbf{s}=(1,1)
$$

(c) Prove or disprove: More roots can be found by adding r or sto the positive roots we have already found.

We know we can add neither \mathbf{r} nor \mathbf{s} to $\mathbf{r}+\mathbf{s}$. We know we can't add \mathbf{s} to $\mathbf{r}+2 \mathbf{s}$. Can we add \mathbf{r} to it?

$$
2(\mathbf{r}+2 \mathbf{s}) \cdot \mathbf{r} / \mathbf{r}^{2}=2(1,1) \cdot(1,-1) / 2=0 .
$$

No, we can't add any more.
(d) You have found all the positive roots. Find all the negative roots. Find all the zero roots. Make a root diagram. It should be a nice, symmetric pattern.

The negative roots are the negatives of the positive roots, or

$$
\{(0,-1),(-1,1),(-1,0),(-1,-1)\}
$$

There are also two zero roots. These are all plotted in the root diagram above.

