Physics 745 - Group Theory
Solution Set 33

1. The group SO(5) has the Dynkin diagram sketched at right.
 The shorter root can be chosen to be \(s = (0,1) \).

 (a) What is the length of the longer root \(r \)? Give the coordinates of \(r \).

 The longer root will be \(\sqrt{2} \) longer than \(s \), and it must be at \(135^\circ \) angle compared to it. Therefore, the longer root will be of length \(\sqrt{2} \) and have coordinates
 \[
 r = (1, -1).
 \]

 (b) Use the rules described in class to determine for what positive integers \(n \) the quantities \(r + ns \) and \(s + nr \) are roots. Write them all out in coordinates.

 We can only add simple roots, we can’t subtract them. Since \(2r \cdot s/r^2 = -1 \), we can only add \(r \) to \(s \) once. Since \(2r \cdot s/s^2 = -2 \), we can add \(s \) to \(r \) twice. This yields two new roots, namely,
 \[
 r + s = s + r = (1, 0) \quad \text{and} \quad r + 2s = (1, 1).
 \]

 (c) Prove or disprove: More roots can be found by adding \(r \) or \(s \) to the positive roots we have already found.

 We know we can add neither \(r \) nor \(s \) to \(r + s \). We know we can’t add \(s \) to \(r + 2s \).

 Can we add \(r \) to it?

 \[
 2(r + 2s) \cdot r/r^2 = 2(1,1) \cdot (1,-1)/2 = 0.
 \]

 No, we can’t add any more.

 (d) You have found all the positive roots. Find all the negative roots. Find all the zero roots. Make a root diagram. It should be a nice, symmetric pattern.

 The negative roots are the negatives of the positive roots, or
 \[
 \{(0,-1),(-1,1),(-1,0),(-1,-1)\}
 \]

 There are also two zero roots. These are all plotted in the root diagram above.