Physics 745 - Group Theory Solution Set 33

1. The group SO(5) has the Dynkin diagram sketched at right. The shorter root can be chosen to be s = (0,1).

(a) What is the length of the longer root r? Give the coordinates of r.

The longer root will be $\sqrt{2}$ longer than s, and it must be at 135° angle compared to it. Therefore, the longer root will be of length $\sqrt{2}$ and have coordinates

$$\mathbf{r} = (1, -1).$$

(b) Use the rules described in class to determine for what positive integers n the quantities r + ns and s + nr are roots. Write them all out in coordinates.

We can only add simple roots, we can't subtract them. Since $2\mathbf{r} \cdot \mathbf{s}/\mathbf{r}^2 = -1$, we can only add \mathbf{r} to \mathbf{s} once. Since $2\mathbf{r} \cdot \mathbf{s}/\mathbf{s}^2 = -2$, we can add \mathbf{s} to \mathbf{r} twice. This yields two new roots, namely,

$$r + s = s + r = (1, 0)$$
 and $r + 2s = (1, 1)$

(c) Prove or disprove: More roots can be found by adding r or s to the positive roots we have already found.

We know we can add neither **r** nor **s** to $\mathbf{r} + \mathbf{s}$. We know we can't add **s** to $\mathbf{r} + 2\mathbf{s}$. Can we add **r** to it?

$$2(\mathbf{r}+2\mathbf{s})\cdot\mathbf{r}/\mathbf{r}^2 = 2(1,1)\cdot(1,-1)/2 = 0.$$

No, we can't add any more.

There are also two zero roots. These are all plotted in the root diagram above.