Homework Set 6

Trivially, there are two character classes, and there are two irreps, each of which is one-dimensional. It isn't that tough to find the other irreps for this group, as illustrated at right.

	r	
i	E	i
Γ^+	1	1
Γ	1	-1

The classes of the bigger group are the classes of D_4 times the

classes of *i*, so there are ten of them (this is getting big and messy). The character table looks like the old one, but then sort of multiplied times a copy of the character table

$\mathcal{D}_{4\mathrm{h}}$	Е	G	A,B	C,D	F,H	i	iG	iA,iB	iC,iD	iE,iF
Γ^{1+}	1	1	1	1	1	1	1	1	1	1
Γ^{2+}	1	1	1	-1	-1	1	1	1	-1	-1
Γ^{3+}	1	1	-1	1	-1	1	1	-1	1	-1
Γ^{4+}	1	1	-1	-1	1	1	1	-1	-1	1
Γ^{5+}	2	-2	0	0	0	2	-2	0	0	0
Γ^{1-}	1	1	1	1	1	-1	-1	-1	-1	-1
Γ^{2-}	1	1	1	-1	-1	-1	-1	-1	1	1
Γ ³⁻	1	1	-1	1	-1	-1	-1	1	-1	1
Γ^{4-}	1	1	-1	-1	1	-1	-1	1	1	-1
Γ ⁵⁻	2	-2	0	0	0	-2	2	0	0	0

for *i*, so we get

four copies of it, but with the lower-right one multiplied by -1.

I don't really like the names for these elements. If I were naming these columns, they would be named $E, C_2, 2\sigma_v, 2\sigma'_v, 2C_4, i, \sigma_h, 2C'_2, 2C''_2, 2S_4$ in that order, where the initial number means the number of elements in that class, C_2 and C_4 represent rotations by 180 and 90 degrees respectively (360/2 and 360/4) about the principal (*z*) axis, σ_h means reflection across the horizontal (*xy*) plane, σ_v and σ'_v represent reflections across different types of vertical planes, C'_2 and C''_2 represent 180 degree rotations around axes perpendicular to the *z*-axis, and S_4 represents 90 degree rotation about the *z*-axis combined with a reflection across the horizontal plane ($S_4 \equiv \sigma_h C_4$).