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I. Continuous Groups 
 
 
 Up to now we have focused almost exclusively, on finite groups.  However, there 
are many examples of infinite groups that will hold our attention for the second half of 
this course.  We will focus on continuous, connected, compact, finite-dimensional 
groups, because many of the ideas we have already discussed will work as well on such 
groups.  These terms will be defined as we go along. 
 
 
A. Examples of Infinite Groups and Basic Concepts 
 
 A group { }R=G  is a set of objects and an operation ⋅  that is closed, associative, 

has an identity E, and every element R has an inverse 1R− .  Some examples of infinite 
groups are (dimensions appear afterwards, in square brackets): 

• { }0−R , the real numbers under multiplication, excluding zero. [1] 

• { }0−C , the complex numbers under multiplication, excluding zero.  The 
complex numbers are numbers of the form z x iy= + , where i is a 
square root of minus one.  A partial multiplication table is given at 
right.  The complex conjugate is given by *z x iy= − . [2] 

• { }0−H , the quaternions under multiplication, excluding zero.  The 
quaternions are numbers of the form 
z x iy ju kv= + + + , where i, j, and k are square roots 
of minus one.  A partial multiplication table is given 
at right.  Note that it is not commutative, since 

 , ,ij ji k jk kj i ki ik j= − = = − = = − =  

 The quaternionic conjugate of z is given by z x iy ju kv= − − − . [4] 
• ( )O n , the orthogonal matrices, the set of n n×  real matrices R satisfying TR R = 1 . 

These matrices represent all rotations and reflections in n-dimensional space.  
[ ( )1 2n n − ] 

• ( )SO n , the special orthogonal matrices, the same as ( )O n , but restricted to 

rotations with determinant one, ( )det 1R = .  [ ( )1 2n n − ] 

• ( )U n , the unitary matrices, the set of n n×  complex matrices U satisfying 
†U U = 1 , where ( )† * T

U U= .  [n2] 

• ( )SU n ,  the special unitary matrices, the same as ( )U n , with the additional 

restriction ( )det 1U = .   [n2 – 1] 

• ( )Sp n , the symplectic matrices, the set of n n×  quaternionic matrices V 

satisfying †V V = 1 , where ( )† T
V V= .  [ ( )2 1n n − ] 

⋅ 1 i 
1 1 i 
i i -1 

⋅ 1 i j k 
1 1 i j k 
i i 1−  k -j 
j j -k -1 i 
k k j -i -1 
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 Given any two groups { }R=G  and { }S=H , we can define the direct product of 

the two groups ×G H as the set of elements ( ){ },R S  with multiplication rule 

 ( ) ( ) ( ), , ,R S R S R R S S′ ′ ′ ′⋅ = ⋅ ⋅ . (1.1) 

The group ×G H  contains both G  and H  as subgroups, because the elements of the form 
( ),R E  act like elements of G and the elements ( ),E S  act like elements of H.  We 

therefore often abbreviate ( ),R E R=  and ( ),E S S= , at least when there is no confusion, 

and therefore all elements can be written as ( ),R S RS= .  It is easy to see that elements in 
G commute with those in H, because 

 ( ) ( ) ( ) ( ) ( ), , , , ,R S R E E S R S E S R E S R⋅ = ⋅ = = ⋅ = ⋅  (1.2) 

 The direct products ×G H  and ×H G  are essentially the same, and we will treat 
them as identical.  It is also possible to take direct products of more than two groups, 
× ×G H K . 

 In fact, these examples are a nearly complete list of all the groups we will be 
considering in the second half of this course.  All of our examples will be no more 
complicated than the direct products of these groups, plus five other groups we will not 
encounter until much later (and will do virtually no work with). 
 The first problem when encountering such infinite groups lies in naming the 
infinite number of elements.  Imagine designating each element of the group by 
coordinates, some list of real numbers, ( )1 2, , , Nx x x=x … , and we associate some 
element of the group R with this list, so we have 

 ( ) ( )1 2, , , NR R R x x x= =x …  (1.3) 

It will be assumed that this mapping is such that every element of G can be uniquely 
denoted by its coordinates.  For example, for the complex numbers, we might choose R to 
be ( )1 2 1 2,R x x x ix= + , or we might equally well denote complex numbers by 

( ) 2
1 2 1, ixR x x x e= .   For the set of rotations in 3D space, we could denote all rotations by 

the three Euler angles, ( ), ,R α β γ , for example.  Note that in some cases, we can get all 
the elements of the group by using only a restricted range of real numbers; for example, if 
we denote complex numbers by 2

1
ixx e , we will find that we need only consider x1 positive 

and 2x  restricted to the range 2xπ π− ≤ ≤ .  There will be some special coordinate e 
(often, but not always, chosen as the origin) that corresponds to the identity element E, so 

 ( ) ( )1R E E R−= ⇔ =e e . (1.4) 

For the complex numbers with ( )1 2 1 2,R x x x ix= + , for example, ( )1,0=e . 
 We also want our coordinates to, in some sense, be “continuous,” by which we 
mean, that group elements that are near each other are designated by coordinates that are 
near each other.  Formally, this requires defining a “topology” (definition of nearby) on 
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the group elements, but we won’t worry about this.  It actually turns out that the Euler 
angles are not a good choice of coordinates for this reason.  It can be shown that to 
perform a rotation around the x –axis by a small angle θ , you must use Euler angles 
( )1 1

2 2, ,R π θ π− , even though this rotation is very close to ( )0,0,0R E= .  Other 
coordinates, such as the ones we will encounter in section D, avoid this problem. 
 A continuous group is then one in which nearby elements can be mapped to 
nearby coordinates.  The number of coordinates required to denote elements of the group 
is called the dimension N of the group.  For example, complex numbers and quaternions 
have dimension 2 and 4 respectively, since it takes 2 or 4 real numbers to specify them.  
A group is finite dimensional if only a finite number of coordinates is needed. All of the 
examples listed above are finite dimensional; the dimensions are listed in square brackets 
after the group description. 
 It will often be awkward to perform multiplication using the abstract group 
elements.  We define the coordinate product function ( ),μ x y  by 

 ( ) ( ) ( )( )1, R R R−≡ ⋅μ x y x y , (1.5) 

where 1R−   is the inverse of R, which turns group elements into coordinates.  In other 
words, multiply the group element corresponding to x and the group element 
corresponding to y and figure out the coordinates of the resulting group element.  As an 
example, suppose we are working with the complex numbers, and we denote them by a 
pair of coordinates ( )1 2 1 2,R x x x ix= + .  Then we would have 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 1
1 2 1 2 1 2 1 2 1 2 1 2

1
1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1

, , ; , , ,

,

x x y y R R x x R y y R x ix y iy

R x y x y i x y x y x y x y x y x y

− −

−

= = ⋅ = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= − + + = − +⎡ ⎤⎣ ⎦

μ x y μ
 (1.6) 

From the associative and identity properties of the group, it is easily proven that 

 ( ) ( ), , ,= =μ x e μ e x x  (1.7a) 

 ( )( ) ( )( ), , , ,=μ x μ y z μ μ x y z  (1.7b) 

Actually finding the form of these coordinate multiplications will generally not concern 
us; we will need them only for proofs. 
 The last definition we need in this section is connected.  A group is connected if 
every element in it can be built out of small elements close to the identity element E.  For 
example, the proper rotations SO(3) is connected, since you can perform any rotation 
with a finite number of small rotations, but O(3) is not, because you can’t, for example, 
perform inversion by making many small rotations.  Of the groups listed, only { }0−R  
and O(n) are disconnected, the rest are connected. 
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B. Measure and Compactness 
 
 We would like to use many of our theorems from finite groups; for example, the 
rearrangement theorem tells us that if x is any element of the group, and if we multiply on 
the right (or left) by every other element of the group, we get every element back exactly 
once.  We used this most commonly in the form 

 ( ) ( ) ( )
R R R

f R f RS f SR
∈ ∈ ∈

= =∑ ∑ ∑
G G G

 (1.8) 

for any element S of the group, and f is any function of the group elements.  The problem 
is that for infinite groups, the sum (1.8) may well be infinite (it usually will be), and we 
don’t know what to make of it.  The solution is to replace the sums by integrals, so we 
would like something like 

 ( ) ( ) ( )f R dR f RS dR f SR dR= =∫ ∫ ∫ , (1.9) 

However, we don’t know what (1.9) means; we 
need to define it.  We don’t know how to integrate 
over abstract group elements, but we do know how 
to integrate over coordinates.  A naive interpretation 
of integration might then be to define 

 ( ) ( )( )Naive
Nf R dR d f R=∫ ∫ x x , (1.10) 

however, this lacks the desired properties (1.9).  
The basic problem is that coordinates can be 
defined in a completely arbitrary way, and 
consequently it is quite possible to have group 
elements that are relatively nearby designated by 
coordinates that are quite spread out, or vice versa, 
so that the naive integral (1.10) exaggerates the 
influence of one region, while suppressing that of 
another.  The correct form can be worked out by 
taking a small region near E, and arbitrarily 
defining its volume, and then multiplying this small 
volume by an arbitrary element R and demanding 
that the new region have the same volume, as 
sketched in Fig. 1-1. This leaves ambiguous whether we should multiply the volume by R 
on the right or on the left, and it turns out we will end up needing two different measures, 
called the left and right measure, defined by 

 ( ) ( ) ( )( )1
, ,N

R i jd R f R C d y f Rμ
−

=
= ∂ ∂∫ ∫ y e

x y x x  (1.11a) 

 ( ) ( ) ( )( )1
, .N

L i jd R f R C d y f Rμ
−

=
= ∂ ∂∫ ∫ y e

x x y x  (1.11b) 

where C is an arbitrary constant.  I now assert that each of these has one of the desired 
properties (1.9).  I will demonstrate it explicitly for the left measure. 

⋅g 

e x1 

x2 

 
Figure 1-1:  Graphical 
illustration of the definition of 
measure in a group.  Elements 
near the identity (green box) are 
chosen to have some fixed 
volume, and then we multiply 
all of them by a group element 
g.  The resulting region (blue 
region) will be designated to 
have the same volume as the 
green region. 
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 Let S be any element of the group, then ( )S R= s  for some coordinate s.  We wish 
to simplify the expression 

 
( ) ( ) ( ) ( )( )

( ) ( )( )( )

1

1

,

, ,

N
L i j

N
i j

d R f S R C d y f R R

C d y f R

μ

μ

−

=

−

=

⋅ = ∂ ∂ ⋅

= ∂ ∂

∫ ∫
∫

y e

y e

x x y s x

x x y μ s x
 (1.12) 

Now, change variables on the right side.  Let ( ),=z μ s x , then as x varies over all 
possible coordinates of the group, so will z, so we can replace the integral over all x with 
the integral over all z However, when performing such a change of variables, we know 
from multi-variable calculus that a Jacobian must be included in the integral, so that 

 ( ),N N N
i j i jd d z x d xμ= ∂ ∂ = ∂ ∂∫ ∫ ∫z x x s x  (1.13) 

This allows us to rewrite (1.12) as  

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 1

1

, ,

, ,

i iN
L

j j

i kN

k k j

d R f S R C d f R
x y

C d f R
x y

μ μ

μ μ

− −

=

−

=

∂ ∂
⋅ =

∂ ∂

∂ ∂
=

∂ ∂

∫ ∫

∑∫

y e

y e

s x x y
z z

s x x y
z z

 (1.14) 

where we have used the fact that the product of a determinant of two matrices equals the 
determinant of the product.  Now, consider the expression 

 

( ) ( )( ) ( )( )

( )
( )

( ) ( ) ( )
,

, , , ,,

, , , ,

i ii

j j j

i k i k

k kk j k j

y y y

v y x y

μ μμ

μ μ μ μ

= = =

= ==

∂ ∂∂
= =

∂ ∂ ∂

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑

y e y e y e

v μ x e y ey e

μ s x y s μ x yz y

s v x y s x x y
 (1.16) 

Substituting this in (1.15), and then comparing the result with (1.11b), we see that 

 ( ) ( ) ( )( ) ( )
1

,iN
L L

j

d R f S R C d f R d R f R
y

μ
−

=

∂
⋅ = =

∂∫ ∫ ∫
y e

z y
z z  (1.17) 

A nearly identical proof then shows that  

 ( ) ( )R Rd R f R S d R f R⋅ =∫ ∫  (1.18) 

It can further be proven that the definitions (1.11) are independent of the choice of 
coordinates, although a different constant C must generally be chosen.   
 To illustrate how measure is defined, consider the complex numbers, with the 
standard coordinates so that  ( )1 2 1 2,R x x x ix= + .  Then with the help of (1.6), we find 
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 ( )
( )

1 2 2 2
1 2

2 1 1,0

,i

j

x x
x x

x xy
μ

==

−∂
= = +

∂ yy e

x y
 (1.19) 

and we can use this to demonstrate that the left measure is given by (choosing C = 1): 

 ( ) ( )1 2
1 22 2

1 2
L

dx dxd z f z f x ix
x x

= +
+∫ ∫  (1.20) 

The right measure turns out to be identical (no surprise, since the group is commutative), 
but this will not generally be the case. 
 In some cases, the left and right measure are identical.  Consider the integral 

 ( ) ( ) ( )R L R L R Ld S d R f SR d S d R f R d S d R f S= =∫ ∫ ∫ ∫ ∫ ∫  (1.21) 

where we have used (1.17) and (1.18) to remove either S or R from the integration.  For 
each of the expressions, there is one integral that is triviall, since it no longer involves the 
function f.  Define the (left and right) volume of the group as 

 ,R R L LV d R V d R= =∫ ∫  (1.22) 

then it is easy to see that (1.21) becomes 

 ( ) ( )R L L RV d R f R V d Rf R=∫ ∫  (1.23) 

where we have changed our elements of the group to R.  Now, provided the volumes on 
each side are finite, we realize that left and right integration are always proportional.  
Indeed, if you use a function that is non-zero only very near the identity element, it is not 
hard to show from the definitions (1.11) that the proportionality constant is one.  This 
implies that the two volumes must be the same as well, so, provided V is finite, we have 

 R Ld R d R V= ≡∫ ∫  (1.24a) 

 ( ) ( ) ( )L Rd R f R d R f R dR f R= ≡∫ ∫ ∫  (1.24b) 

Equation (1.24a) has been proven only in the case of finite volume, but simple arguments 
show that if either integral is infinite, both integrals will be infinite.  However, (1.24b) 
works only for finite volume groups, and in this case we may use (1.9). 
 We are now ready to define compact groups:  A continuous group is compact if 
the volume of the group is finite.  As we will demonstrate below, many of our theorems 
we previously developed can be applied to compact groups as well. 
 Intuitively, it is not hard to understand the concept of compactness.  The group 
SO(3) is compact, because we can find a finite list of rotations such that every possible 
rotation is within, say, one degree of our list.  In contrast, no finite list of real numbers 
can be made such that every real number is within a factor of 1.1 of one of the numbers.  
That the real numbers (or complex, or quaternions) have infinite volume can be verified 
directly using (1.25a).  Fortunately, we won’t be using this definition, since soon we’ll 
have a better way.  In fact, of our examples we gave in the first section, only the first 
three have infinite volume; all the others are compact. 
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C. Representations 
 
 In a manner similar to before, we define a representation ( )RΓ  as a set of l l×  
invertible matrices satisfying 

 ( ) ( ) ( )R R R R′ ′Γ Γ = Γ ⋅  (1.25) 

The number l is the dimension of the representation, and in general has no connection 
with the dimension of the group.  These matrices could, in principle, be real, complex, or 
quaternionic, but we will focus on complex matrices (real matrices being a special case of 
complex).  A representation may have more than one element of the group represented by 
the same matrix; when this does not occur, we say the representation is faithful, but we 
won’t attach any significance to faithful representations. 
 Given some representations, there are several ways to make some new 
representations: 

• Similarity:  Let Γ  be a representation, and S a constant invertible matrix of the 
same size, then we can make a new representation of the form 

 ( ) ( )1R S R S−′Γ = Γ  (1.26) 

This representation has the same dimension as ( )RΓ .  When two such 
representations are related by (1.26), we say they are similar, and write ~′Γ Γ . 

• Complex Conjugate:  Let Γ  be a representation, then the complex conjugate 
representation *Γ  produced simply by taking the complex conjugate of every 
component is also a representation. This representation has the same dimension 
as Γ .. 

• Direct Sum:  Let AΓ  and BΓ  be two representations, then define A B⊕Γ  as 

 ( ) ( )
( )
0

0

A
A B

B

R
R

R
⊕ ⎛ ⎞Γ

Γ = ⎜ ⎟⎜ ⎟Γ⎝ ⎠
 (1.27) 

If the dimensions of AΓ  and BΓ  are lA and lB respectively, then the dimension of 
A B⊕Γ  is A Bl l+ . 

• Tensor Product: Let AΓ  and ′Γ  be two representations, then define A B⊗Γ  by 
( ) ( ) ( )A B A BR R R⊗Γ = Γ ⊗Γ , defined by its components: 

 ( ) ( ) ( ) ( )
,

A B A B
im jnij mn

R R R R⎡ ⎤Γ ⊗Γ = Γ Γ⎣ ⎦  (1.28) 

where the indices i and m run from 1 to lA, and j and n run from 1 to lB.  The 
indices on the tensor product representation are understood to not be multiplied, 
but rather, represent pairs of indices.  The dimension of A B⊗Γ  is lAlB.  

 
 It is easy to show that the similarity relationship has all the properties of an 
equivalence relation; that is ~Γ Γ , if ~ ′Γ Γ  then ~′Γ Γ , and if ~ ′Γ Γ  and ~′ ′′Γ Γ  then 

~ ′′Γ Γ .  This means that representations can be grouped together based on similarity, and 
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we will in fact treat similar representations as if they are identical.  It is easily 
demonstrated that ~A B B A⊕ ⊕Γ Γ  and ~A B B A⊗ ⊗Γ Γ  
 If a representations is explicitly real ( ( )RΓ  real for all R), or if it is equivalent to 
such a representation, we will say that the representation is real.  Sometimes, it turns out 
that it is impossible to make ( )RΓ  real, even though * ~Γ Γ ; in this case we call the 
representation pseudoreal.  Sometimes, the complex conjugate is simply inequivalent to 
the representation, in which case we call the representation complex. 
  If a representation is in block-diagonal form, it can obviously be written as a 
direct sum. If it is block-diagonal, or equivalent to block-diagonal, we call the 
representation reducible.  If it is not reducible, we call it irreducible.  As an abbreviation, 
an irreducible representation will be called an irrep.  Much of our work will be in trying 
to find and characterize the irreps of our various groups. 
 It’s now time to start proving a few theorems that we derived for finite groups.  
The first and most important is the fact that representations of compact groups are always 
equivalent to unitary representations of the groups.  The proofs are virtually identical to 
those given by Dr. Holzwarth in the first half of the course, except that sums over group 
elements are always replaced by integrals. 
 Let ( )RΓ  be a representation of a compact group.  Define 

 ( ) ( )†A dR R R= Γ Γ∫  (1.29) 

This matrix is manifestly Hermitian, and therefore can be written in the form †A VDV= , 
where V is unitary, and D is real and diagonal.  Furthermore, A is positive definite, 
because 

 ( ) ( ) ( ) 2† 0A dR R R dR Rψ ψ ψ ψ ψ= Γ Γ = Γ >∫ ∫  (1.30) 

It follows that A has positive eigenvalues, so D has positive numbers along its diagonal, 
and therefore 1/2D  and 1/2D−  both exist.  We define the matrix S by 

 1/2 1 1/2 †,S VD S D V− −= =  (1.31) 

and define a new representation similar to the old 

 ( ) ( ) ( )1 1/2 † 1/2R S R S D V R VD− −′Γ = Γ = Γ . (1.32) 

I now assert that the new representation is unitary.  We demonstrate this explicitly: 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

† 1/2 † † 1/2 1/2 † 1/2 1/2 † † 1/2

1/2 † † † 1/2

1/2 † † 1/2 1/2 † † 1/2

S S D V S VD D V S VD D V S A S VD

D V S dR R R S VD

D V dR RS RS VD D V dR R R VD

− − − −

− −

− − − −

′ ′Γ Γ = Γ Γ = Γ Γ

⎡ ⎤= Γ Γ Γ Γ⎣ ⎦
⎡ ⎤ ⎡ ⎤= Γ Γ = Γ Γ⎣ ⎦ ⎣ ⎦

∫
∫ ∫

 

 1/2 † 1/2 1/2 † † 1/2 1/2 1/2 1D V AVD D V VDV VD D DD− − − − − −= = = =  (1.33) 

We therefore can focus exclusively on unitary representations.  Fortunately, for nearly all 
the groups we are working with, the definition of the group itself provides a unitary 
representation.  The first three examples from section A were not compact, so we won’t 
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worry about them, and all of the other examples except ( )Sp n  are defined in terms of 
unitary matrices.  Hence we can skip the step of proving they are compact. 
 Other theorems about representations follow in a similar manner.  For example, if 
we have a complete list of the inequivalent unitary irreps of a group, ( ) ( ){ }a RΓ , then we 

can prove the great orthogonality theorem: 

 ( ) ( )†A B
ij mn im jn AB adR R R V lδ δ δΓ Γ =∫  (1.34) 

where V is the volume of the group, and la is the dimension of one of the representations. 
 As with finite groups, it is often useful to work with the character, defined by 

 ( ) ( )( ) ( )tr ii
i

R R Rχ = Γ = Γ∑  (1.35) 

Similar representations have equal characters.  The characters for the other ways of 
creating new representations are similarly simply related. 

 ( ) ( )**A AR Rχ χ= , (1.36a) 

 ( ) ( ) ( )A B A BR R Rχ χ χ⊕ = + , (1.36b) 

 ( ) ( ) ( )A B A BR R Rχ χ χ⊗ = . (1.36c) 

From (1.34) we can then demonstrate 

 ( ) ( )*A B
abdR R R Vχ χ δ=∫  (1.37) 

Some other expressions that work well for finite groups are unfortunately not very 
helpful with infinite groups.  For example, it is still true that the sum of the squares of the 
dimensions of the irreps of a group adds up to the order of the group, but since the group 
has an infinite number of elements, this simply tells you that there are an infinite number 
of irreps. 
 When we deal with direct products of groups, it turns out that finding irreps is 
pretty straightforward.  Suppose the irreps of { }R=G�  are ( ){ }A RΓ , and of { }R′=H  are 

( ){ }B R′ ′Γ .  Then the irreps of ×G H  will be of the tensor product-like form 

 ( ) ( ) ( ), ,A B A BR R R R′ ′ ′Γ = Γ ⊗Γ  (1.38) 

Their characters are simply related as well. 

 ( ) ( ) ( ), ,A B A BR R R Rχ χ χ′ ′ ′=  (1.39) 

Hence when working out irreps, we need not work them out for direct products of groups; 
if we know them for G� and H  we know them for ×G H . 
 Although formulas like (1.35) and (1.38) are elegant and sometimes useful, they 
are unwieldy because of the complications of actually performing the integrals.  
Fortunately, for compact connected groups, we can focus on elements near the identity E, 
and this will significantly reduce our work.  We turn now to the subject of generators. 
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D. Generators of a Group 
 
 Because the groups we are considering are infinite, it is difficult to discuss all the 
elements of the group.  In both finite and infinite groups, it is commonplace to simply 
describe some of the elements.  For example, for the finite group NC  we discussed in the 
previous half of the course, all elements can be built out of a single element NC  raised to 
various powers.  It is sufficient, therefore, when describing a representation of the group 

NC , to give only one matrix ( )NCΓ .  For continuous connected compact groups, we need 
only consider elements very near the identity E, since all elements are products of such 
elements. 
 Suppose we choose coordinates such that ( )0R E= ; that is, the coordinate 

associated with the identity is 0=e .  Then let ( )RΓ  be a unitary representation.  We 

always map the identity element to the identity matrix ( )EΓ = 1 .  We define the 
generators aT  of this representation as the matrices 

 ( )( ) 0a
a

T i R
x =

∂
= Γ

∂ x
x  (1.39) 

Obviously, the number of generators is equal to the dimension of the group.  For 
elements very close to the identity element, we can always Taylor expand our elements 
about E.  To linear order in x, 

 ( )( ) ( )( ) ( )0 expR R i i iΓ = Γ − ⋅ = − ⋅ = − ⋅x T x 1 T x T x  (1.40) 

The demand that ( )RΓ  be unitary then requires, to linear order 

 ( )( ) ( )( ) ( ) ( ) ( )†† †1 1 1R R i i i= Γ Γ = − ⋅ − ⋅ = + ⋅ −x x T x 1 T x x T T  (1.41) 

Hence the generators must be Hermitian, 

 † =T T  (1.42) 

 Up to now we have allowed our coordinates to be completely arbitrary, other than 
the insistence that they be smooth.  We now wish to change our coordinates in a more 
sensible manner.  Let x be an arbitrary 
small coordinate, but let M be an integer, 
such that Mx can be made as large as we 
wish.  Then let’s define the group 
element corresponding to Mx to be that 
which occurs if we produce M small 
steps of size x.  In other words, 
( ) ( )MR M R=x x .  We are, in a sense, 

shifting from coordinates that initially 
might have been very “curved” to ones 
that now go “straight” away from the 
origin, as sketched in Fig. 1-2.  Then we 

x1 

x2 

x1 

x2 

 
Figure 1-2:  The initial (left) and final (right) 
coordinates.  They new coordinate system is 
“straight” but it’s not yet “orthonormal” 
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see that for such large coordinates, we have 

 ( )( ) ( )( ) ( )( ) ( ) ( )exp exp
MMMR M R R i i MΓ = Γ = Γ = − ⋅ = − ⋅⎡ ⎤⎣ ⎦x x x T x T x  (1.43) 

Since Mx can be a large coordinate, we may rewrite (1.43) setting M →x x , but x is no 
longer restricted to be small, so we have 

 ( )( ) ( )expR iΓ = − ⋅x T x  (1.44) 

 Our coordinates are now “straight” but not “orthogonal.”  Consider the matrix 

 ( )trab a bM T T=  (1.45) 

Keeping in mind that the generators are Hermitian and the cyclic property of the trace, it 
is easy to show that M is a real, positive symmetric matrix.  It can therefore be 
diagonalized by creating new generators aT ′  that are linear combinations of the old.  One 
can similarly define new coordinates ′x  that are linear combinations of the old, such that 
expression (1.44) takes the form ( )( ) ( )expR i ′ ′Γ = − ⋅x T x .  The matrix M in this new 
basis will now be diagonal, so 

 ( )tr a b a abT T k δ′ ′ =  (1.46) 

We can then multiply each aT ′  by an arbitrary constant to make new generators aT ′′  with 
whatever trace we want, so now ( )tr a b abT T λδ′′ ′′ = . where we get to pick λ .  We will then 
discard the original generators Ta and the first modified generators aT ′  in favor of aT ′′ .  
We will, however, never use the unmodified generators again, so to avoid unnecessary 
adornments, we will simply call these newest generators Ta, and drop the double primes.  
So we have 

 ( )tr a b abT T λδ=  (1.47) 

 Consider now the following product, which we expand out to second order in the 
coordinates: 

 
( ) ( )( ) ( ) ( )

( ) ( ) [ ]22 21 1
2 2

exp exp

1 , ,

R R i i

i i i

Γ = − ⋅ − ⋅

= − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅

x y T x T y

T x T y T x T y T x T y
 

 ( ) ( )( ) [ ]( ){ }1
2exp ,R R i iΓ = − ⋅ + ⋅ − ⋅ ⋅x y T x T y T x T y  (1.48) 

Comparison with (1.40) tells us that the commutator of two T’s must be another T (or 
combinations thereof), so we have 

 [ ],a b abc c
c

T T i f T= ∑  (1.49) 

The constants fabc are called structure constants and are an inherent property of the group.  
They will be the same in all representations of the group, because the product appearing 
in (1.48) must yield the same element for all representations.  Indeed, it can be shown 
that at least in some region around the identity element E, the group multiplication table 



© 2009, Eric D. Carlson 12

can be completely determined by the structure constants, and hence they represent a very 
minimal description of the entire group.  If you are given the matrices Ta and need the 
structure constants, they can be found in a straightforward manner with the help of (1.47): 

 [ ]( )tr ,abc a b ci f T T Tλ =  (1.50) 

Indeed, with the help of the cyclic property of the trace, it is possible to show that the 
structure constants are completely anti-symmetric, so that 

 abc bca cab acb cba bacf f f f f f= = = − = − = −  (1.51) 

In addition, they satisfy an additional identity.  It is trivial to demonstrate 

 [ ] [ ] [ ], , , , , , 0a b c b c a c a bT T T T T T T T T⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (1.52) 

by simply writing out all the terms.  Using (1.49), this implies 

 ( ) 0bcd ade cad bde abd cde
d

f f f f f f+ + =∑  (1.53) 

 A set of generators satisfying (1.49) are termed a Lie algebra, and the groups they 
generate are called Lie groups.  Because we demanded that our groups all be compact, we 
will have Hermitian generators and unitary representations, and the groups we get are 
called compact Lie groups. 
 Suppose we find a set of real structure constants f that are completely anti-
symmetric (1.51), and also satisfy (1.53).  Is it guaranteed that there are a set of matrices 
Ta that will satisfy (1.49)?  The answer is yes, by construction.  Given the N structure 
constants, define a set of N N×  matrices Ta defined by its components: 

 ( )a abcbc
T if= −  (1.54) 

Then working out the commutators of the Ta’s with the help of (1.51) and (1.53), it is not 
hard to show that (1.49) is automatically satisfied.  This representation of the group is 
called the adjoint representation and has the same dimension as the dimension of the 
group, adjl N= . 
 We will sometimes need to find the generators of a representation after we have 
performed a similarity transformation, a complex conjugation, a direct sum of 
representations, or a tensor product.  The first three of these are pretty easy to work out.  
If S is the matrix that relates two representations, ( ) ( )1R S R S−′Γ = Γ , then it is not 
surprising that 

 1
a aT S T S−′ =  (1.55) 

The complex conjugate is only slightly tricky; because of the factor of i in (1.44), which 
introduces an extra minus sign. 

 ( )**A A
a aT T= −  (1.56) 

It is easy to demonstrate, for example, that the eigenvalues of the generators of the 
complex conjugate representations are just the negatives of the eigenvalues of the 
generators of the representation itself.  For the direct sum, you can probably guess: 
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0

0

A
A B a

a B
a

T
T

T
⊕ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (1.57) 

For the direct product, you probably couldn’t:  

 
B A

A B A B
a a l l aT T T⊗ = ⊗ + ⊗1 1  (1.58) 

where 1l is the l l×  unit matrix.  To demonstrate that this is correct, consider the 
expression 

 ( )( ) ( ) ( ) ( )exp expA B A B A BR i i i⊗ ⊗ ⎡ ⎤Γ = − ⋅ = − ⋅ ⊗ − ⊗ ⋅⎣ ⎦x x T x T 1 1 x T  (1.59) 

The two terms in the exponential commute, because their product in either order is 
( ) ( )A Bi i⋅ ⊗ ⋅x T x T .  So we can split this into the product of two exponentials, and we get 

 
( )( ) ( ) ( )

( ) ( ) ( ) ( )
exp exp

exp exp exp exp ,

A B A B

A B A B

R i i

i i i i

⊗ ⎡ ⎤ ⎡ ⎤Γ = − ⋅ ⊗ ⊗ − ⋅⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − ⋅ ⊗ ⊗ − ⋅ = − ⋅ ⊗ − ⋅⎣ ⎦ ⎣ ⎦

x x T 1 1 x T

x T 1 1 x T x T x T
 

 ( )( ) ( )( ) ( )( )A B A BR R R⊗Γ = Γ ⊗Γx x x  (1.60) 

 From a practical standpoint, the effect of (1.58) is that if you know the lA 
eigenvalues of A

aT  and the lB eigenvalues of B
aT , the eigenvalues of A B

aT ⊗  will be the 
sums of any one eigenvalue of each, for a total of lA lB combinations. 
 It is also helpful to know how the generators of a direct product of groups works 
out.  If N and M are the dimensions of the groups G  and H, then the dimension of ×G H  
will be N + M.  There will be one generator of ×G H  for every generator of G, and also 
for every generator of  H.  If the generators of G  and H are A

aT  and B
bT ′ , then the 

corresponding generators of the representations of ×G H  will be 

 , ,, and .
B A

A B A A B B
a a l b l bT T T T′ ′= ⊗ = ⊗1 1  (1.61) 

It is easy to see that the generators of the two groups will commute; indeed, this is a sign 
that your group is a direct product. 
 
 
E. The Simplest Groups 
 
 We are now ready to start cataloging all the Lie Groups.  The simplest possible 
example would be a one-dimensional group, in which there will be only one generator T1.  
Any single generator can always be diagonalized, so if T1 is more than one-dimensional, 
it is obviously block diagonal, and therefore reducible.  The irreps will be one-
dimensional, and are described by the value of this one-dimensional matrix, which we’ll 
call ( )1T q= , where q is real. The corresponding irreps are qΓ , or more commonly, we’ll 
just label them q.  The representation corresponding to the coordinate x is just 
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 ( )q iqxx eΓ =  (1.62) 

The trivial representation corresponds to q = 0.  The tensor product of any two such irreps 
can be easily worked out with the help of  (1.58): 

 q q q q′ ′⊗ +Γ = Γ  (1.63) 

 This group is already listed among our list of possible groups; indeed, it appears 
twice, as U(1) and as SO(2).  The set of all 1 1×  unitary matrices is the same as the 
complex numbers of the form ie θ .  The set of all 2 2×  orthogonal matrices R with 
determinant +1 take the form 

 ( )
cos sin
sin cos

R
θ θ

θ
θ θ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (1.64) 

These are, in fact, the same group, at least mathematically.  One can argue that for each 
of these groups, one must have ( ) 21 2q iqe ππ= Γ = , so in fact q is restricted to be an 
integer.  Note that this restriction does not come from the commutation relations of T1, so 
in fact our claim in the previous section that the structure constants determine everything 
is not quite right.  But this issue turns out to be slightly subtle.  I will discuss it some in 
the next chapter, so for now we will leave it ambiguous whether there is such a restriction 
on q.  I will subsequently always name this group U(1). 
 Next consider the case of a two-dimensional Lie group.  The structure constants 
fabc are completely anti-symmetric, and since abc take on only the values 1 and 2, they 
must all vanish.  Hence the two generators T1 and T2 will commute, and can be 
simultaneously diagonalized, which again implies only one-dimensional irreps.  The 
group is ( ) ( )1 1U U× , and its irreps are 1 2,q qΓ  or  ( )1 2,q q , with  

 ( )1 2 1 1 2 2,
1 2,q q iq x iq xx x e e− −Γ =  (1.65) 

 For three-dimensional groups, it is possible to have non-zero structure constants 
abcf  for the first time.  Of course, it is possible that the structure constants will happen to 

vanish, in which case the group works out to be ( ) ( ) ( )1 1 1U U U× × .  If it does not vanish, 
then it must be proportional to the Levi-Civita symbol abcε , 

 abc abcf f ε=  (1.66) 

where the Levi-Civita symbol is given by 

 123 231 312 132 213 321 1, all other components vanishε ε ε ε ε ε= = = − = − = − =  (1.67) 

Indeed, if we redefine our generators by multiplying them by a constant, a aT T f→ , 
then we will find abc abcf ε= .  This is the only interesting three-dimensional compact Lie 
group, and the subject of the next chapter. 
 The Levi-Civita symbol can be generalized to more dimensions; the general rule 
is 1ab zε = +"  if ab z"  is an even permutation of 12 n" , 1ab zε = −"  if it is an odd 
permutation, and zero if any indices are repeated. 


