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III. Particle Physics and Isospin 
 
 
 Up to now we have concentrated exclusively on actual, physical rotations, either 
of coordinates or of spin states, or both.  In this chapter we will be concentrating on 
internal symmetries, symmetries or approximate symmetries that have nothing to do with 
physical rotations.  These symmetries are useful in a variety of settings, but probably 
have the widest application in particle physics. 
 
 
A. Particle Physics 
 
 Particle physics, also known as quantum field theory, comes from the union of 
Einstein’s special theory of relativity and quantum mechanics.  According to relativity, 
information can never be transmitted faster than the speed of light, and the usual 
instantaneous action at a distance we commonly posit in conventional quantum 
mechanics is violated.  All forces and interactions must be transmitted by fields, similar 
to the familiar electromagnetic fields, with which you are already familiar.  Indeed, it is 
not just the forces that are described in terms of fields, but everything, including 
electrons, protons, etc.  Hence the name quantum field theory. 
 When you perform a rotation of a field, it will change in some predictable way.  
For example, when you rotate an electric or a magnetic field, it will rotate as a vector, 
with the components changing into each other in a predictable way.    How the fields 
rotate ends up influencing the properties of the resulting quantized particles.  Hence the 
resulting particle (the photon) will have a predictable spin (1 in the case of the photon).1  
Similarly, all electrons are spin ½.  The possible spins of a particle are, of course, simply 
integers or half-integers, the same as in ordinary quantum physics.  It is a prediction of 
quantum field theory that any half-integer spin field will result in particles which must be 
in anti-symmetric quantum states (fermions) while integer spin fields result in particles 
which must be in symmetric quantum states (bosons). 
 As you may be familiar with from quantizing the electromagnetic field, when you 
quantize a field you end up with a formalism sufficiently powerful to deal with the 
creation and destruction of particles.  There is no conservation-of-particles rule in particle 
physics.  The field theory must include information (in the Hamiltonian) that tells you 
how much energy you need to create a particle, which for a particle at rest is simply 

2E mc= . Hence the Hamiltonian must contain information about the mass of the 
particles as well.2  For technical reasons, it turns out that the term in the Hamiltonian is 
proportional to m2 for bosons and to m for fermions. I’m not going to try to explain why. 
 In ordinary quantum mechanics, we perform rotations in 3D space; in quantum 
field theory we also perform Lorentz transformations.  The full Lorentz group is 
interesting and not terribly difficult (it has the name SO(3,1), and is closely related to 
SO(4)), but it isn’t compact (basically because no matter how much you accelerate, you 

                                                 
1 It’s a bit more complicated than this.  It turns out the field you end up quantizing is neither the electric nor 
the magnetic field, but the vector potential A(r).  Any way, it works out to spin 1. 
2 In this class, the word mass always refers to rest mass.  Hence all electrons have the same mass, 
regardless of their velocity. 
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never “circle around” back to where you started), and we won’t discuss it here.  A closely 
related phenomenon is the existence of anti-particles.  Every field, it turns out, creates 
and annihilates two types of particles, one of which we call the particle and the other the 
anti-particle (which is which is a matter of convention).  The anti-particle always has the 
same spin and the same mass as the particle.  Occasionally they will be identical.  It is 
also the case that if we have a symmetry group G of a set of particles that transform under 
a representation Γ , their corresponding anti-particles will transform under the 
representation *Γ .  It follows that if a particle is its own anti-particle, it must only 
transform under real representations of the group.  I know this was confusing, but we’ll 
return to this in the next section. 
 In addition to the symmetries of the Lorentz group, it is not uncommon to have 
so-called internal symmetries.  These symmetries describe changes that interchange one 
particle for another, rotating them in some abstract space, rather than physical space.  
These symmetries can be either discrete or continuous, but the continuous ones seem to 
be used more often, and can also correspond to forces, as we will discuss in the next 
section. 
 
 
B. U(1) Symmetries 
 
 I want to start the discussion of symmetries with a familiar example.  Suppose we 
have a single electron with wave function ( )ψ r .  It is well known that if ( )ψ r  is a 

solution of Schrödinger’s equation, so is ( )ie θ ψ r .  One way to think of this is that there 

is an operator ( )R θ  which has the effect 

 ( ) ( ) ( )iR e θθ ψ ψ=r r  (3.1) 

Since the set of numbers ie θ  can be thought of as unitary 1 1×  matrices, this is the group 
U(1).  According to chapter 1, the representation ( )qΓ  is given by ( )q iqe θ−Γ = , so we see 
that the electron corresponds to 1q = − .  If we call this the “charge” then we would say 
the electron has charge -1. 
 What if we have two electrons?  Well, the wave function would look something 
like ( )1 2,ψ r r , which is some component of the tensor product space of the two separate 

wave functions ( ) ( )1 1 2 2ψ ψ⊗r r , and therefore we find 

 ( ) ( ) ( )2
1 2 1 2, ,iR e θθ ψ ψ=r r r r  (3.2) 

This leads us to the remarkable conclusion that two electrons have a total charge of -2.  I 
will leave it to the reader to deduce the charge of three or more electrons. 
 Other particles will have other charges; for example, the proton has charge +1, the 

++Δ  charge +2, the uranium nucleus +92.  What about anti-particles?  The representation 
under the group U(1) of the positron (anti-electron) should correspond to the complex 
conjugate of the “matrices” appearing in (3.1).  Therefore, for a positron, we would have 
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 ( ) ( ) ( )iR e θθ ψ ψ−=r r  (3.3) 

Hence positrons are predicted to have charge +1.  This is a general rule for a U(1) 
symmetry:  the “charge” of the anti-particle is the opposite of the “charge” of the particle. 
 It is useful to work with the operator that is the generator of this abstract phase 
rotation, which we will (in this case) call Q, defined by 

 ( )
0

Q i R
θ

θ
θ =

∂
=

∂
 (3.4) 

where Q is called the charge operator.  It has the value -1 on the electron, +2 on the ++Δ , 
etc.  We can then easily show 

 ( ) ( )expR iQθ θ= −  (3.5) 

 In the first part of this course, we commonly used symmetry to demonstrate 
degeneracy.  This unfortunately doesn’t help us in this case, since all the irreps of U(1) 
are one-dimensional, and therefore we only discover that each particle has the same mass 
as itself. 
 Now, we want U(1) to be a symmetry of the Hamiltonian.  It follows that 

( ) , 0R Hθ =⎡ ⎤⎣ ⎦ , which tells us in turn that [ ], 0Q H = .  Now, suppose we have an initial 

collection of particles Iψ  and a final collection Fψ .  There will be some total charge 
associated with each of these, so 

 andI I I F F FQ q Q qψ ψ ψ ψ= =  (3.6) 

If one is going to get turned into the other, there must be some (direct or indirect) 
connection between them.  Roughly speaking, we need 0F IHψ ψ ≠ .  We now note 
that 

 [ ] ( )0 ,F I F I F I F I F IQ H QH HQ q q Hψ ψ ψ ψ ψ ψ ψ ψ= = − = −  (3.7) 

Thus the matrix element must vanish unless I Fq q= .  We now come to our first group 
theory conclusion (drum roll please): charge is conserved! 
 Electric charge is not the only U(1) symmetry of particle physics.  Another 
example is so-called baryon number.  Certain particles, such as the proton and neutron, 
are baryons, but so are a host of less familiar particles, such as the ++Δ  mentioned earlier.  
The operator that measures baryon number is called B (the analog of Q) and the proton 
and neutron each have baryon number +1. Anti-protons and anti-neutrons each have 
baryon number -1.  Electrons have baryon number 0.  A 238U atom (electrons and all ) has 
baryon number +238.  As far as we can tell, baryon number is absolutely conserved, and 
commutes with the Hamiltonian as well.  The conservation of baryon number accounts 
for the stability of the proton and the stability or meta-stability of various isotopes: there 
is no lighter baryon than the proton that the proton could decay into. 
 There is a big difference between these two U(1) symmetries.  Technically, 
electromagnetism is a local or gauged U(1) symmetry.  This means that you can actually 
multiply the wave function by different phases at different points in space and time.  How 
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this is achieved is discussed in quantum mechanics course, and will not be discussed 
here.  However, three properties that result in this case are worth mentioning: 

• There is a field (the EM field), and hence a particle (the photon), with spin 1 
associated with this symmetry. 

• The strength of the corresponding coupling is proportional to the charge q.  In 
other words, high charge particles make bigger EM fields. 

• The most stable (lowest energy) states tend to correspond to q = 0. 
Note that the charge q is the 1 1×  generator of the corresponding irrep.  These properties 
will generalize in other cases.  For more complicated symmetries, the particle will still be 
spin 1, but there will be one such particle for each generator, the couplings will be 
proportional to the matrix Ta for each generator, and the most stable states will tend to be 
those where all the generators vanish; i.e., the trivial irrep of the group. 
 Not all symmetries are gauged and have forces that carry them.  Electromagnet-
ism is (of course), but as far as we know, baryon number is not.  There is no baryo-
photon, no baryo-force, and nature doesn’t prefer baryon-zero combinations. 
 
 
C. Isotopes and Isospin 
 
 Our examples before were rather disappointing, because we found no 
degeneracies with the group U(1).  Let’s try to find a more interesting case.  Consider, for 
the moment, the proton and neutron, two baryons with mass differing by only about 
0.14%.  Is it possible that there is an approximate symmetry relating these two particles?  
There are other striking similarities when you look at more complicated nuclei.  For 
example, 3He and 3H differ in mass by only 0.02%.  They also have very similar energies 
for their excited states.  Similar patterns can be found for heavier isotopes, for example 
14C, 14N, and 14O.  This suggested to Werner Heisenberg in 1932 that there might be a 
symmetry relating protons and neutrons.  Because of its similarity to spin, it was named 
isotopic spin by Eugene Wigner, but is now known as isospin. 
 Imagine for the moment an operator, which we will name 12I  (I’ll explain the 2 
later), which interchanges protons and neutrons, like this 

 1 12 and 2p n n p= =I I  (3.8) 

Of course, this operator can’t perfectly commute with the Hamiltonian, since if it did, the 
proton and neutron would be exactly degenerate, and would have identical interactions 
(but only one of them has a charge). 
 Now, when we are looking at protons and neutrons, we already know that there 
are two other operators that are conserved, charge and baryon number.  It follows that 
any linear combination of these will also be conserved.  Consider in particular the 
operator 1

3 2Q B= −I , which acting on a proton or neutron has the effect 

 1 1
3 32 2andp p n n= =I I  (3.9) 

This operator must commute exactly with the Hamiltonian. 
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 If any pair of operators that commutes with the Hamiltonian, their commutator 
must also commute with the Hamiltonian.  Let’s define [ ]3 1 2, i=I I I .  Then it isn’t hard 
to work out the effects of 2I  on the proton and neutron.  We find 

 1 1
2 22 2andp i n n i p= = −I I  (3.10) 

 Now, let’s change our notation slightly.  Let’s consider the proton and neutron as 
two partner particles, which we will call nucleons, and relabel them as 

 1 2andN p N n= =  (3.11) 

(they might also be labeled by their charges, 0,N p N n+ = = ).  Then the operation 

of the three operators Ia on these states will be described by  

  ( )a i j a ji
j

N N I=∑I  (3.12) 

where our three matrices Ia are given by 

 1 2 3

0 1 0 1 01 1 1, ,
1 0 0 0 12 2 2

i
I I I

i
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.13) 

We recognize (3.13) as nothing more than the three generators of the spin-1/2 
representation of SU(2), so ( )1

2
a aI T= .  The isospin of combinations of protons and 

neutrons can be worked out by taking tensor products of the ( )1
2  representation.  The 

resulting total isospin is normally denoted by I (instead of j), and satisfies 

 2 2
a

a
I I I= +∑  (3.14) 

 When actually working with isospin, it is more useful to work with the operators 
1 2i± = ±I I I .  When acting on a proton or neutron, these have the effect 

 , 0, , 0n p p p n n+ + − −= = = =I I I I  (3.15) 

Note that +I  always increases the charge by one, while −I  always decreases it by one.  
This property will generalize to nuclei made of protons and neutrons, and later to other 
particles as well. 
 Since isospin pretty successfully describes the masses and energy levels of 
isotopes, it clearly is also saying something about their binding interactions.  Isospin is 
not a good symmetry of electromagnetism (it treats the proton and neutron as the same!)  
and in fact EM interactions are probably the largest source of isospin violation.  The 
nucleus must be bound by some other type of force, called the strong force (or 
sometimes, the strong nuclear force).  Hence isospin is considered an approximate 
symmetry only of the strong force.  It is not used to describe particles that do not 
participate in the strong force, like electrons.  But the nucleons are not the only particles 
that feel the strong force.  We now turn our attention to some of these other particles. 
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D. Other strongly interacting particles 
 
 I have in my office a copy of the particle data book, containing hundreds of 
discovered particles, and save for nine of them,3 they all have strong interactions.  The 
strongly interacting particles are categorized into three categories, the baryons, which 
have baryon number +1, the anti-baryons, 
which have baryon number -1, and the 
mesons, which have baryon number 0.  The 
lightest baryons are listed at right, and the 
lightest mesons below.  The anti-baryons are 
the anti-particles of the baryons, and they are 
not normally listed separately. The mesons are 
sometimes their own anti-particles, and 

                                                 
3 According to the standard model of particle physics, there is a tenth, the Higgs boson, which is as of 2009 
undiscovered.  Extensions beyond the standard model predict many others. 

Baryons (mass  1500) 
 Name Mass Spin I I3 Y 
 p+ 938 1

2  1
2  1

2+  +1 
 n 940 1

2  1
2  1

2−  +1 

 Λ 1116 1
2  0 0 0 

 Σ+ 1189 1
2  1 +1 0 

 Σ0 1193 1
2  1 0 0 

 Σ- 1197 1
2

 1 -1 0 

 Δ++ 1231 3
2  3

2  3
2+  +1 

 Δ+ 1232 3
2  3

2  1
2+  +1 

 Δ0 1234 3
2  3

2  1
2−  +1 

 Δ- 1235 3
2  3

2  3
2−  +1 

 Ξ0 1315 1
2  1

2  1
2+  -1 

 Ξ- 1321 1
2  1

2  1
2+  -1 

 Σ*+ 1383 3
2  1 +1 0 

 Σ*0 1384 3
2  1 0 0 

 Σ*- 1387 3
2  1 -1 0 

Λ(1405) 1406 1
2  0 0 0 

N+(1440) 1440 1
2  1

2  1
2+  +1 

N0(1440) 1440 1
2  1

2  1
2−  +1 

 Ξ*0 1532 1
2  1

2  1
2+  -1 

 Ξ*- 1535 1
2  1

2  1
2+  -1 

Masses in MeV/c2.  
I = Total isospin 
I3 = Third component of isospin. 
Y = hypercharge, in chapter 5 

Mesons (mass < 900) 
 Name Mass Spin I I3 Y 
 π+ 139 0 1 +1 0 
 π0 135 0 1 0 0 
 π- 139 0 1 +1 0 

 K+ 494 0 1
2  1

2+  +1 
 K0 498 0 1

2  1
2−  +1 

 0K  498 0 1
2  1

2+  -1 
 K- 494 0 1

2  1
2−  -1 

 η 547 0 0 0 0 

 ρ+ 770 1 1 +1 0 
 ρ0 770 1 1 0 0 
 ρ- 770 1 1 +1 0 

 ω 782 1 0 0 0 

 K*+ 896 1 1
2  1

2+  +1 
 K*0 892 1 1

2  1
2−  +1 

 *0K  892 1 1
2  1

2+  -1 
 K*- 896 1 1

2  1
2−  -1 

Masses in MeV/c2.  
I = Total isospin 
I3 = Third component of isospin. 
Y = hypercharge, in chapter 5 
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sometimes not.  For example, the 0π  is its own anti-particle, while the π ±  are 
antiparticles of each other.  
 If isospin is going to be a symmetry of the strong interactions, then not only must 
the proton and neutron fit into a representation of the group SU(2), so also must the rest 
of these particles.  Indeed, it turns out that they do fit into such groupings, as listed in the 
two tables.  Every one of these particles comes with partners which together form a 
complete set that interchange with each other according to the rules 

 ( ) ( ) ( )( )I I I
a m m a m mm

B B T′
′′

= ∑I  (3.16) 

The matrices ( )I
aT  are simply the representations found in the previous chapter of the 

group SU(2).  In particular, the T+  matrices, are given explicitly by equation (3.19).  For 
example, for the four Δ -particles, we have 

 0 03 , 2 , 3 , 0− + + ++ ++
+ + + +Δ = Δ Δ = Δ Δ = Δ Δ =I I I I  (3.17) 

We can similarly get relations for all the −I  operators: 

 0 03 , 2 , 3 , 0.++ + + − −
− − − −Δ = Δ Δ = Δ Δ = Δ Δ =I I I I  (3.18) 

 As we look at the tables of bosons and mesons, some patterns quickly emerge.  
Firstly, baryons are always fermions (half-integer spin) and mesons are always bosons 
(integer spin).  This pattern continues for much more massive particles as well.  
Furthmore, only a small number of isospin representations are actually ever used.  
Baryons are isospin 0, 1

2 , 1, or 3
2 , while mesons are isospin 0, 1

2 , or 1.  This pattern 
continues for heavier particles as well. 
 Now, the mass of a fermion is supposed to be determined by some sort of 
Hamiltonian, so Xm X H X= .  With the help of (3.17), and the Hermitian conjugate 
of (3.18), 

 0 03 , 2 , 3 , 0.++ + + − −
+ + + +Δ = Δ Δ = Δ Δ = Δ Δ =I I I I  (3.19) 

we can show that all four Δ -particles have approximately the same mass.  Assuming the 
Hamiltonian commutes with isospin, we have 

 0

0

1 1
3 3

0 0 0 01 1
2 2

0 0 0 01 1
3 3

,

,

,

m H H H H m

m H H H H m

m H H H H m

++ +

+

−

++ ++ ++ + ++ + + +
+ +Δ Δ

+ + + +
+ +Δ Δ

− − − −
+ +Δ Δ

= Δ Δ = Δ Δ = Δ Δ = Δ Δ =

= Δ Δ = Δ Δ = Δ Δ = Δ Δ =

= Δ Δ = Δ Δ = Δ Δ = Δ Δ =

I I

I I

I I

 

 0 .m m m m++ + −Δ Δ Δ Δ
= = =  (3.20) 

Similar methods will demonstrate that every set of fermionic “partners” should have the 
same mass.  For bosons, the Hamiltonian, in a sense, gives you the mass squared instead, 
but the conclusion is the same, the masses must be equal. 
 We understand how to let isospin operators act on the baryons and mesons.  Does 
it work the same way for the anti-baryons?  According to the rules laid out in chapter one, 
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the anti-particles should transform according to the complex conjugate representation, 
and as we showed there, under complex conjugation, ( ) ( )* *A A

a aT T= − .  Since we are 

working with Hermitian operators, we can rewrite this as ( ) ( )*A A T
a aT T= − , with T denoting 

transpose, or the switching of rows and columns.  For the raising and lowering operators, 
it follows that 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )** * * *
1 2 1 2 3 3andA A A A A A A ATT T iT T iT T T T± ±= ± = − ± = − = −  (3.21) 

The effect of these is that the anti-particles have the opposite T3 values, and also T±  has 

the opposite sign.  Mathematically, if we have a set of baryons ( )I
mB , then their 

corresponding anti-particles ( )I
mB  will transform according to 

 ( ) ( ) ( ) ( )( ) ( )
3 andI I I I I

m m m mmmm
B m B B T B ′± ± ′′

= − = −∑I I  (3.22) 

For example, for the anti-proton and anti-neutron, we have 

 
1

3 2

1
3 2

, , 0,

, , 0.

p p p n p

n n n p n
+ −

− +

= − = − =

= + = − =

I I I

I I I
 (3.23) 

It is, of course, possible to relable the anti-baryons in such a way that these 
transformations will look more like the usual transformations, since, after all, the 
complex conjugate of the (I) representation is still the (I) representation, but it is 
generally considered preferable to not do so, since this tends to obscure the simple 
relationship between particles and anti-particles.  So we need to know (3.23) to deal with 
anti-baryons. 
 
 
E. Interactions of strongly interacting particles 
 
 The neat thing about isospin is that it not only provides you with information 
relating the masses of particles, it also tells us about interactions.  For example, consider 
the decays 

 * πΣ →Λ  (3.24) 

where *Σ  is any of the three baryons listed in the tables above, and π  is any of the three 
pions.  This decay occurs extremely quickly, suggesting it is governed by strong 
interactions.  It is obvious that since the Λ  is neutral, the *Σ  and π  must have the same 
charge.  Is it possible to find a simple relationship between the rates for these three 
processes?  The answer is yes. The rate for this decay will depend on a variety of factors, 
but since it occurs, it implies there must be some term in the strong Hamiltonian 
connecting these states,4 i.e., we will have a rate governed by 

                                                 
4 Technically, it need not occur in the Hamiltonian, but in the time evolution operator, which is the 
exponential of the Hamiltonian.  This must also commute with isospin. 
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 ( ) 2* *
m m m mHπ πΓ Σ →Λ ∝ Λ Σ  (3.25) 

 In addition there will be kinematic factors involving the integration over all 
possible final state momenta.  These kinematic factors will depend on the masses of the 
various particles, but since these are nearly identical, they should make little difference, 
and the proportionality in (3.25) should still apply. 
 To relate the matrix elements in (3.25), we can use the fact that the Hamiltonian 
commutes with isospin.  Imagine, for example, we know that some portion of the 
Hamiltonian turns a *+Σ  into the appropriate particles, like this: 

 *H a π+ +Σ = Λ  (3.26) 

Of course, we have no idea what the constant a is.  Now, let the isospin lowering operator 
act on (3.26).  Since it  commutes with the Hamiltonian, we have 

 *H a π+ +
− −Σ = ΛI I  (3.27) 

Since the Λ  has isospin 0, the isospin operator cannot act on it, and only acts on the pion.  
Looking up the appropriate matrix element for isospin 1, we therefore have 

 *0 0 *0 02 2 orH a H aπ πΣ = Λ Σ = Λ  (3.28) 

If we let the isospin lowering operator act again, we find 

 * *2 2 orH a H aπ π− − − −Σ = Λ Σ = Λ  (3.29) 

It follows that the relevant matrix elements are all equal, 

 * 0 *0 *H H H aπ π π+ + − −Λ Σ = Λ Σ = Λ Σ =  (3.30) 

and therefore the decay rates are all equal. 

 ( ) ( ) ( )* *0 0 *π π π+ + − −Γ Σ →Λ = Γ Σ →Λ = Γ Σ →Λ  (3.31) 

 Let’s do a non-trivial example, to see how it works in more complicated 
situations.   The two Ξ* particles decay to a Ξ plus a pion.  For example, the neutral one 
will decay based on an interaction of the type 

 *0 0 0H a bπ π− +Ξ = Ξ + Ξ  (3.32) 

because these are the only possibilities based on charge conservation.  These can be 
related by letting +I  act on both sides of this expression.  The +I  would normally act on 

both particles on the right, and on the particle on the left,  but *0 0+ Ξ =I   and 
0 0π +

+ +Ξ = =I I  because these are the highest charge states in their multiplets.  We 
therefore have 

 *0 0 0 0 00 2H a b a bπ π π π− + + +
+ + += Ξ = Ξ + Ξ = Ξ + ΞI I I  (3.33) 
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We see that 2b a= − , which lets us rewrite (3.32) as 

 *0 0 0 2H a aπ π− +Ξ = Ξ − Ξ  (3.34) 

If we now let −I  act on both sides of this equation, we have 

 *0 0 0 2 ,H a aπ π− +
− − −Ξ = Ξ − ΞI I I  

 * 0 0 0 0 02 2 2 .H a a a a aπ π π π π− − − − − −Ξ = Ξ + Ξ − Ξ = Ξ − Ξ  (3.35) 

From equation (3.34) and (3.36), we can now obtain the ratio of the various matrix 
elements: 

 0 0 *0 *0 0 * 0 *1 1
2 2

H H H Hπ π π π− + − − − −Ξ Ξ = − Ξ Ξ = Ξ Ξ = − Ξ Ξ  (3.35) 

This implies that the relative rates for these decays is 

 ( ) ( ) ( ) ( )
*0 * 0

*0 0 0 * 0

2 2
π π

π π
− + − −

− −
Γ Ξ →Ξ Γ Ξ →Ξ

Γ Ξ →Ξ = = = Γ Ξ →Ξ  (3.37) 

Note that this means the middle two decays occur twice as fast as the outer ones.  Note 
also that the total decay rate for *0Ξ  and *−Ξ  work out the same.  This is a general feature 
of these decays, and is often useful as a quick check that we have made no error. 
 In the simple examples given here, there are quicker ways to get the answers.  For 
example, in calculating rates for * πΞ →Ξ , we could simply note that we must make 
make an isospin 1

2I =  state ( *Ξ ) from an isospin 1
2I =  state (Ξ ) and an I = 1 state (π ).  

This combination of isospins is exactly what Clebsch-Gordan coefficients are for, and the 
rate is proportional to, for example,  

 ( ) 2*0 0 0 1 1 1 1
2 2 2 2, ,1; ,0πΓ Ξ →Ξ ∝ + +  (3.38) 

We can similarly find the rest of the corresponding matrix elements in (3.37).  Personally, 
because the representations involved are so small, I generally find it easier to simply 
work them out as I have done above, but if you find that confusing, you an try simply 
pulling up Clebsch-Gordan coefficients. 
 Decays are not the only processes where we can use isospin.  For example, pions 
can be collided with nucleons (the neutron and proton), and we can have processes like 

N Nπ π→ .  The same techniques will work, but are more difficult to implement in this 
case.  The problem is that the initial state is in the isospin representation 
( ) ( ) ( ) ( )31 1

2 2 21 ⊗ = ⊕ , as is the final state.  In consequence, the matrix elements of the 

form N H Nπ π , does not depend on one, but two independent parameters a and b, 
corresponding to the two possible isospins of the incoming/outgoing state.  This makes 
the computations more difficult.  In such circumstances, a more sophisticated technique, 
called tensor methods can prove useful for efficiently calculating the answer.  I will 
reserve a discussion of this technique for the next chapter in the context of the group 
SU(3). 


