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IV. SU(3) 
 
 
A. SU(3) 
 
 The three continuous groups that play the most prominent role in particle physics 
are U(1),. SU(2), and SU(3).  We now turn our attention to the group SU(3) 
 SU(3) is the set of 3 3×  unitary matrices U with determinant one.  As always, we 
can write U in terms of generators: 

 ( )exp a aU ix T= −  (4.1) 

where we have introduced for the first time the Einstein summation convention, which 
means that any index that is repeated in a single term (in this case, a) has an implied sum.  
This notation will prove very useful later in the chapter.  For U to be unitary, Ta must be 
Hermitian.  For it to be determinant one, we must have 

 ( ) ( )1 exp exp tra a a aU ix T i x T= = − = −⎡ ⎤⎣ ⎦  (4.2) 

and therefore ( )Tr 0aT = .  There are nine linearly independent Hermitian matrices, but 
the traceless constraint reduces this to eight.  By convention, these matrices are given by 
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  (4.3) 

These have been normalized so that ( ) 1
2tr a b abT T δ= .   

 We note first that among these generators, we can find two generators that 
commute with each other, and therefore we can simultaneously diagonalize two of them.  
We have already done so, and the two diagonal matrices T3 and T8 will play a special role 
in SU(3).   This three dimensional representation will be called the “3”, and ultimately it 
is the only irrep of SU(3) we will explicitly write down.  The three 
basis vectors in this representation are called 1 , 2 , and 3 , and 
the eigenvalues of these three operators under T3 and T8 are evident 
from (4.3): 

 
1 1

3 1 1 3 2 2 3 32 2
1 1 1

8 1 1 8 3 2 8 3 32 3 2 3 3

, , 0,
,

T T T
T T T

= + = − =
= + = + = −

 (4.4) 

These eigenvalues, taken as pairs, are called the weights of this 
representation.  They are plotted in two dimensions, as illustrated 
in Fig. 4-1, with each basis vector plotted as a point in the two-
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Figure 4-1: The 
weights of the 3 
irrep of SU3). 



© 2009, Eric D. Carlson 42

dimensional space of eigenvalues under the two operators.  They form an equilateral 
triangle of side one, centered on the origin. 
 Given a representation, we can always find the complex conjugate representation.  
The complex conjugate of the 3 representation is called the “ 3 ”, and the generators are 
given by 

 ( ) ( )3 3 T
a aT T= −  (4.5) 

Let’s denote the basis vectors for the 3  as 1 , 2 , and 3 .  The 
eigenvalues of these three basis vectors will therefore be given by 
the negatives of the corresponding basis vectors of the 3 
representation, and therefore a plot of the weights will simply be 
the negatives of the 3 representation, as sketched in Fig. 4-2.  Since 
the weights are different, the 3 is not equivalent to its complex 
conjugate, and therefore the 3 is a complex representation.  For 
completeness, I have also included a sketch of the trivial 1 
representation in Fig. 4-3. 
 
 
B. Tensor Notation 
 
 It will prove helpful to develop a tensor notation which keeps 
track of what happens to an arbitrary vector as we act on it with various 
generators.  Our first step is a minor notational one:  whenever we 
encounter a matrix, we will write the row index elevated (“staggered 
indices”); for example, the components of a unitary matrix U would be written a

bU , with 
a the row index and b the column index.  The product of two unitary matrices would look 
like a b

b cU V ; note that the index that is summed over ends up with one index up and one 
down.  This will be a general feature of how we combine indices. 
 Suppose we are looking at an arbitrary element of the 3 irrep of SU(3).  Such an 
arbitrary element could be written in the form 

 i
i v=v  (4.6) 

where vi are the three “components” of this vector. If we let a generator Ta act on this, for 
example, we would have 

 ( )( ) ( )( )3 3j i
i i i

a a i j a i ai j
T T v T v T v= = =v  (4.7) 

In terms of components, then the effect on v is 

 ( )( )3:
i

i j
a a j

T v T v→  (4.8) 

 In a similar manner, we can write an arbitrary vector in the 3  representation as 

 i
iu=u  (4.9) 
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Figure 4-2: The 
weights of the 3  
irrep of SU(3). 
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Figure 4-3: 
The weight 
of the 1 
irrep of 
SU(3). 
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With the help of (4.10), it is easy to figure out the effect of the generators on these 
vectors: 

 ( ) ( )( )3 j

a j ai i
T u u T= −  (4.10) 

In each case, it is easy to see that these objects are three-dimensional representations of 
the group SU(3), because there are three independent components of vi or ui. 
 Now, suppose we have a tensor product representation, for example, the 3 3⊗  
representation of SU(3).  The basis states in this case look like ij , with i and j running 

from 1 to 3.  A general vector in this basis state would look like ij
ijw .  It would 

transform under the action of a generator according to  

 ( ) ( )( ) ( )( )3 3i jij kj ik
a a ak k

T w T w T w= +  (4.11) 

This concept can be generalized.  We might write the most general element of the tensor 
product of N 3’s and M 3 ’s as 

 1 2 1 2

1 2 1 2

N M

M N

i i i j j j
j j j i i iw … …
… …  (4.12) 

We will find within these very general representations of SU(3) all of the irreps.  The 
action of a generator on this tensor will be 
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 (4.13) 

The great thing about this approach is that any representation that the effects of the 
generators on these complicated tensors can be worked out using only the explicit form of 
the Ta’s in the 3 representation; no more complicated representations are ever needed.  
 
 
C. Invariant Tensors and Irreps 
 
 The representations we have found so far are not irreps.  For example, consider 
the 3 3⊗  representation, which has in general nine components.  Consider, in particular, 
the component given by i i

j jw δ= .  The action of a generator on this particular tensor is 

 ( ) ( )( ) ( )( )3 3 0
i ki k i

a a j k aj k j
T T Tδ δ δ→ − =  (4.14) 

This means that this particular component of the 3 3⊗  representation is unchanged under 
all of the generators.  i

jδ  is called an invariant tensor.  Basically, it is invariant because, 
under a general unitary transformation U, it would change to 

 ( ) ( )† †:
l ii i k i

j k l jj j
U U U UUδ δ δ→ = =  (4.15) 
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 This is not the only invariant tensor.  It is not hard to show that the Levi-Civita 
tensor ijkε  and the corresponding tensor ijkε  are also invariant; for example 

 ( ) ( )( ) ( )( ) ( )( )3 3 3 0
l l l

a ljk a ilk a ijl aijk i j k
T T T Tε ε ε ε= − − − =  (4.16) 

This can be shown to be the result of the Ta’s being traceless, which is in turn related to 
the fact that the U’s have determinant one. 
 We can now proceed to trying to find a large number of irreps of SU(3); in fact, 
we will find all of them, though we won’t know that until the next chapter.  Our goal is to 
write them as tensors 1 2

1 2

N

M

i i i
j j jw …
…  while keeping the number of indices N + M to a minimum. 

We’ll start with a simple example.  Consider a general tensor of the form i
jw  containing 

one index up and one down, so ( ) ( ), 1,1N M = .  This has nine independent components, 

but it is not an irrep, because it contains a portion proportional to i
jδ .  The trace of i

jw , 

does not change as you act on it with SU(3) operators.  Hence the 3 3⊗  representation 
contains the trivial representation (under our current notation, the ( )0,0   representation).  

We must eliminate this, simply by demanding that 0i
iw = , so that there is no trace. 

  Demanding that the trace of w vanish reduces the number of independent 
components of w from nine to eight.  Hence this will be an eight-dimensional irrep of 
SU(3).  It is easy to work out the weights.  The weights of the 3 3⊗  are simply the sum 
of all the weights of the 3 and 3  representation, but then subtract out one of the zero 
weights, leaving the eight weights 

 ( ) ( ) ( ) ( ){ }3 31 1
2 2 2 21,0 , , , , , 2 0,0 .± ± ± ± ×∓  (4.17) 

and sketched in Fig. 4-4.  This representation is called the 8.  It 
isn’t hard to show that it is a real representation; indeed, it is the 
adjoint representation, defined in chapter 1.  The weights form a 
regular hexagon with side 1 centered on the origin, plus a pair of 
zero weights (designated by a dot and a circle). 
 Let’s try again, this time working with the 3 3⊗  
representation.  The components of an arbitrary vector will be of 
the form ijw , or nine independent components.  However, if we 
imagine pulling out the anti-symmetric part of it by defining 

 ij
k ijkw w ε≡  (4.18) 

we would end up with a part with only one down index, 
transforming as the 3  representation.  To avoid having this piece, 
we demand that this vanish, which will occur if the tensor has no 
anti-symmetric part, so we demand ij jiw w= .  This reduces the 
number of components to six.  This irrep, which is called the 6, 
will have weights again arranged in an equilateral triangle, as 
sketched in Fig. 4-5. 
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Figure 4-4: The 
weights of the 8 
irrep of SU3). 
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Figure 4-5: The 
weights of the 6 
irrep of SU3). 
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 Let’s try to make this as general as possible.  A general representation with N 
indices up and M indices down will be denoted by a tensor of type 1 2

1 2

N

M

i i i
j j jw …
… .  To make 

sure we can’t play a trick like Eq. (4.22) and replace two up indices with a single down 
index, this tensor must be completely symmetric in all of its up indices.  Similarly, it 
must be completely symmetric in the down indices as well.  Finally, to keep you from 
eliminating one up and one down index, we must also demand 

 2

2
0N

M

ki i
kj jw =…
…  (4.19) 

Because we have already demanded that this tensor be symmetric on all up and all down 
indices, it doesn’t matter which index we choose from the top and bottom to sum over. 
 We have now figured out how to construct basis vectors chosen from 3 3N M⊗  to 
make what I am calling the ( ),N M  irrep.  I haven’t really proven that these will be irreps 
(they are), nor that we got all of them (we did).  I would like to 
explain just a little more clearly how we can work out what the 
weights are in any given representation.  For example, the 
( )3,0  irrep corresponds to tensors of type ijkw  that are 

completely symmetric.  Therefore, for example, 123 132w w= , 
etc.  The weights of this will be simply the sum of the weights 
corresponding to any three of the weights corresponding to 1 , 

2 , and 3 , allowing repeats but not counting separately 
1+2+3 and !+3+2, etc.  This works out to form a ten-
dimensional representation of SU(3), as illustrated in Fig. 4-6.  
This representation, called the 10, will prove important in later 
sections. 
 The general pattern is not too hard to figure out.  
The weights of the ( ),N M  irrep always turn out to make 
a hexagon pattern, with all the outer angles 120 degrees, 
and the sides alternately being of size N and M (if one of 
these is zero, then it will be an equilateral triangle 
instead).  The outermost layer of weights will be singular, 
but as we work our way in, the weights will become 
doubly and then triply degenerate, etc., until the pattern is 
triangular, at which the weights will no longer increase 
their degeneracy.  In Fig. 4-7, I’ve sketched the weights 
for the ( )2,1  irrep, which I believe is called the 15 
representation.1 
 The dimensions of the ( ),N M  irrep is a bit tricky to work out, but not too bad.  It 

turns out that the number of ways of picking the indices 1 2 Ni i i…  out of the set { }1, 2,3 , if 

order doesn’t matter but repetition is allowed, is ( )( )1
2 2 1N N+ + .  Since we have also to 

                                                 
1 The (4,0) irrep is called the 15’. 
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Figure 4-6: The 
weights of the 10 
irrep of SU3). 
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Figure 4-7: The weights 
of the 15 irrep of SU3).
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choose lower indices, you might naively expect the dimension to be the product of this 
with the same formula for M, or ( )( )( )( )1

4 2 1 2 1N N M M+ + + + .  But this ignores the 

traceless condition, Eq. (4.19), which adds ( ) ( )1
4 1 1N N M M+ +  constraints.  The 

dimension is the difference between these numbers, which works out to 

 ( ) ( )( )( )1
2dim , 1 1 2N M N M N M= + + + +   (4.20) 

 
D. Tensor Products of Irreps 
 
 Tensor products are easily worked out if you have 
the weights of the various irreps.  For example, suppose 
we want to take the tensor product 6 3⊗ .  This 
representation is eighteen-dimensional.  The weights are 
simply the sum of all the weights of the 6 and the 3 .  I 
have sketched the results in Fig. 4-8.  It bears a strong 
resemblance to the fifteen-dimensional irrep in Fig. 4-7.  
Indeed, it includes all of these weights, and the three 
remaining weights are simply those of the 3.  Hence we 
conclude 

 6 3 15 3⊗ = ⊕  (4.21) 

We can get the same result another way.  Recall that the 6 
irrep is written in terms of symmetric tensors of the form 

ijw , and the 3  is written like ku .  When we multiply them together, we can combine 
them to make a tensor with two indices up and one down, like this: ij

kw u , which is 
nothing but the 15 irrep.  However, we must remove the trace part, which would be a 
tensor like ik

kw u , which has only one up index. 
 Let’s do a more complicated case to make sure we understand it.  What is 8 8⊗ ?  
This would be represented by two tensors j

iu  and j
iv .  Then can be multiplied together to 

make a tensor like j l
i ku v , an irrep of type ( )2,2 , which according to equation (4.20) is 27 

dimensional.  You can also combine indices, connecting them up and down, to make 
something with only two indices left over, like j l

i ju v  or j i
i ku v , which are two 8’s (since 

they have one index up and one index down), or even get rid of all the indices: j i
i ju v  to 

make a 1.  Finally, you can turn two of the up indices into a down index, or vice versa, to 
make j l

i k jlmu v ε  or j l ikm
i ku v ε , therefore making an irrep of type (0,3) (the 10 ) or of type 

(3,0) (the 10).  Putting it all together, we conclude 

 8 8 27 10 10 8 8 1⊗ = ⊕ ⊕ ⊕ ⊕ ⊕  (4.22) 

This technique can be systematized using a variety of techniques, but we won’t worry 
about it too much.  Suffice it to say there are straightforward ways of finding tensor 
products of any pair of representations in SU(3), and they can be generalized to SU(N). 
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Figure 4-8: The weights 
of the 6 3⊗ representation 
of SU(3).  By inspection, 
the result is the weights of 
the 15 and the weights of 
the 3. 
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D. Hypercharge and Gell-Mann SU(3) 
 
 It’s time to start making some connections with 
particle physics.  We start by defining hypercharge Y for 
strongly interacting particles as 

 ( )32Y Q I= −  (4.23) 

where Q is electric charge and I3 is the third component of 
isospin.  Because charge increases by one unit for each unit of 
increase in isospin, hypercharge Y will be the same across an 
isospin multiplet.  Since Q and I3 are preserved by strong 
interactions (and electromagnetic interactions, for that matter), 
isospin will be conserved by strong interactions.  Hence the 
kaons, for example, are long lived (by particle physics 
standards), because there is nothing lighter with hypercharge 
that it can decay into. 
 What’s interesting is if we make a plot of I3 vs. Y for 
the eight lightest mesons, which are all spin zero, as sketched 
in Fig. 4-9.  The plot looks extremely similar to the weight 
diagram for the 8 irrep of SU(3).   The plot is not exactly a 
regular hexagon, because the vertical scale is off by a factor of 
2 3 , which suggests perhaps 82 3Y T= .  An identical 
plot occurs if we consider the eight lightest spin half 
baryons, or the eight lightest spin-1 mesons.  It looks as if 
these particles might somehow be connected by an SU(3) 
symmetry!  Also consider a plot of the nine lightest spin-
3/2 baryons.  These fit perfectly into the 10 irrep of SU(3), 
as sketched in Fig. 4-10, except there is one point missing.  
This missing state, if it existed, should have hypercharge -2 
(something that had never been seen before), and charge -1.  
It was named the Ω- particle. 
 A problem occurs almost immediately.  If isospin 
symmetry is really valid, then it is easy to show that all the 
particles in a multiplet should have the same mass.  This 
doesn’t work particularly well for the eight spin-1/2 
baryons, nor for the spin-3/2 baryons, and is positively 
awful for the eight spin-0 mesons.  At first glance, this 
seems like a disaster.  But there is, perhaps a couple of 
reasons to think things aren’t as disastrous as they seem.  
First of all, it is possible for the interactions of particles to 
more or less respect a symmetry, even if the mass does not.  
For example, even though the proton and deuteron have 
very different masses, their interactions with the electrons is nearly identical.  In particle 
physics, because we are so often dealing with relativistic particles, there is reason to 
believe there should be less distinction between “masses” and “interactions,” but still, it 
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Figure 4-9: The third 
component of isospin 
vs. hypercharge for the 
eight lightest spin-0 
mesons (bottom) and 
eight lightest spin-1/2 
baryons (top). 
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Figure 4-10:  The third 
component of isospin vs. 
hypercharge for the nine 
lightest spin-3/2 baryons 
(filled circles).  The open 
circle at the bottom would 
complete the 10 irrep of 
SU(3), and was predicted 
by Gell-Mann.  It was 
named the Ω-. 
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is too soon to give up.  Secondly, it is commonly the case that even when predictions 
from group theory no longer are accurate, they can commonly still be useful as an 
organizing principle.  For example, in multi-electron atoms, we commonly speak of 
having a certain number of 1s electrons, 2s electrons, 2p electrons, and so on.  This way 
of describing electrons is not technically accurate, because each electron can be identified 
with a certain orbital only if we ignore the interactions between electrons, a terrible 
approximation.  Nonetheless, this way of describing the electrons composing an atom 
actually works pretty well.  Note that the generators T1, T2, and T3 are the generators of an 
SU(2) subgroup of SU(3); this is simply the isospin group discussed in the previous 
chapter. 
 We would like to describe all the baryons or mesons that occur together in a 
multiplet as if they are components of a common object, using our vector notation.  For 
example, to describe a spin-0 meson, we would write it in the form 

 i j
j iu M  (4.24) 

where the components i
ju  tells us which of the eight particles we are dealing with.  The 

values of the various u-components, up to sign conventions, can be worked out from the 
weights, together with some knowledge about isospin.  The non-zero ones are given by 

 
0 2 1 3 0 3

3 3 1 2
2 0 1 2 1 0 1 2 31 1 2
1 1 2 2 1 2 32 6 6

: 1, : 1, : 1, : 1,
: 1, : , : 1, : ,

K u K u K u K u
u u u u u u uπ π π η

+ −

− +

= = = =
= = − = = = = = −

 (4.25) 

Hence, for example, we would write 3
1K M+ = , or 0 1 21 1

1 22 2
M Mπ = − .  Note 

that the factors in front are always chosen to be normalized to one (so that * 1j j
i iu u = ) and 

they are also traceless in every case, as they must be. 
 Similarly, we will write the eight lightest spin-1/2 baryons, and the ten lightest 
spin-3/2 baryons, in the form 

 *andi j ijk
j i ijkv B w B  (4.26) 

The values for the v’s are very similar to (4.25): 

 
0 2 1 3 0 3

3 3 1 2
2 0 1 2 1 0 1 2 31 1 2
1 1 2 2 1 2 32 6 6

: 1, : 1, : 1 : 1
: 1, : , : 1, : ,

n v p v v v
v v v v v v v

+ −

− +

= = Ξ = Ξ =
Σ = Σ = − = Σ = Λ = = = −

 (4.27) 

For the spin-3/2 baryons, we must make w completely symmetric.  The appropriate 
assignments are: 

 

222 0 221 212 122 112 121 112 1111 1
3 3

* 223 232 322 * 113 131 3111 1
3 3

*0 123 132 213 231 312 321 1
6

: 1, : , : , : 1,

: , : ,

: ,

w w w w w w w w

w w w w w w

w w w w w w

− + +++

− +

Δ = Δ = = = Δ = = = Δ =

Σ = = = Σ = = =

Σ = = = = = =

 

 * 233 323 332 * 133 313 331 3331 1
3 3

: , : , : 1w w w w w w w− −Ξ = = = Ξ = = = Ω = . (4.28) 

For example, we could write ( )* * * *1
113 131 3113

B B B+Σ = + + . 
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E. Masses and the Gell-Mann – Okubo Formulas 
 
 We would like to make predictions about the masses and interactions of the 
various particles that fit together in an SU(3) multiplet.  Let’s start with the masses.  For 
example, suppose we want to know the mass of a spin-3/2 baryon.  We would expect this 
mass to be governed by some term or terms in the Hamiltonian, so, for a fermion, we 
expect there to have 

 *
* *

B
m B H B=  (4.29) 

Now, if we write this baryon in the form * *ijk
ijkB w B= , so that * * *ijk

ijkB B w= .  Now, 
when we put it all together, we would anticipate that we could write something like 

 *
*

B
m a w w= ⋅ ⋅  (4.30) 

where a is, for the moment, a vaguely defined constant, and the dot product means we are 
somehow multiplying the components of w by components of the complex conjugate.  
We’ll get more specific in a moment. 
 Now, in expression (4.30), we would like this matrix element to be some product 
of the corresponding tensors that is invariant under SU(3).  Now, w has three up indices, 
but w* will transform like the complex conjugate representation.  Basically, since the 
complex conjugate of the 3 is the 3 , this means that w* acts as if it has three down 
indices.  I’ll denote this by writing this expression in the form 

 *
†ijk lmn

lmn ijkB
m a w w=  (4.31) 

where †
ijkw just means the same thing as *ijkw .  Now, if we knew the coefficients ijk

lmna  

(there are only 729 of them), we’d be all set.  But we now argue that ijk
lmna  must be an 

invariant tensor, which means that it can only be the product of j
iδ ’s, ijkε ’s or ijkε ’s.  In 

this case, because the number of indices up and down are equal, we won’t use the ε ’s.  If 
we write ijk

lmna  as the product of three δ ’s, we can attach the up indices to the down 
indices in six different ways, something like this: 

 *
† † † † † †ijk jik ikj kij jki kji
ijk ijk ijk ijk ijk ijkB

m aw w bw w cw w dw w ew w fw w= + + + + +  (4.32) 

However, recall that the w’s are completely symmetric, so in fact all these terms are 
identical.  We therefore have 

 *
† ijk
ijkB

m aw w=  (4.33) 

We can now predict the mass of any of the B*’s.  For example, for +Δ  we would have 

 ( ) ( )† 112 † 121 † 211 1 1 1
112 121 211 3 3 3m a w w w w w w a a+Δ

= + + = + + =  (4.34) 

 We can now repeat this computation for every particle in the SU(3) multiplet.  
The conclusion is simple, they all have the same mass, since they all have † 1ijk

ijkw w = .  In 
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fact we already knew this.  But it was worth showing how it works out in this simple 
case. 
 Fortunately, we can do better.  Although we knew going in that SU(3) symmetry 
isn’t really a good symmetry for the masses, we do expect isospin to be a good symmetry 
for the masses.  We therefore conjecture that the mass part of the Hamiltonian has an 
additional term which commutes with isospin, but not with all of SU(3).  If we look over 
our eight SU(3) generators, and recognize that T1, T2, and T3 generate isospin, then we 
realize there is only one generator that commutes with isospin, namely T8.  We therefore 
conjecture that the real formula for the mass looks something like 

 ( )*
† †

8
oijk lmn ijkp lmn

lmn ijk lmno ijk pB
m a w w b w w T= +  (4.35) 

 Now, we’ve already worked out the form for the a term.  For the b term, we have 
to connect the two indices on the T8 with something.  We can’t connect them with each 
other (that would yield the trace of T8, which is zero), so clearly one of the indices must 
attach itself to w and the other to †w .  It doesn’t matter which one connects to which, 
because the indices on w and †w  are completely symmetric.  The remaining indices must 
now connect with each other so that 

 ( )*
† †

8
kijk ijl

ijk ijk lB
m aw w bw w T= +  (4.36) 

 We can use (4.36) to predict relations between the various components of the 10.  
For example, to find the mass of the +Δ , we would have 

 
( ) ( )

( )

† † † 1 † 2 † 31
8 1 2 32 3

† 121 † 211 † 1121 1
121 211 1122 3 2 3

2kijk ijl ij ij ij
ijk ijk ij ij ijl

m aw w b T w w a b w w w w w w

a b w w w w w w a b

+Δ
= + = + + −

= + + + = +
 (4.37) 

Now, because isospin is still a valid symmetry, the mass of the 0Δ , −Δ , and ++Δ  work 
out to exactly the same thing.  In retrospect, it would have been easier to work with the 

−Δ  or ++Δ , since these would have had only one term in the sum.  We can proceed to 
find masses of some of the other particles in the SU(3) multiplet.  We find 

 * *
1

2 3
, and .m a m a b

Σ Ξ
= = −  (4.38) 

Of course, we have no idea what a and b are.  But we can find one relation between them.  
Combining (4.37) and (4.38), it is clear that 

 * *2 .m m mΔΣ Ξ
= +  (4.39) 

This is one of the Gell-Mann – Okubo mass formulas.  Looking up the masses in the 
previous chapter, and using the average for the multiplet, you will find that the left side is 
about 2770 MeV/c2, and the right about 2767 MeV/c2, or an error around 0.1%.  Not bad! 
 Using (4.36), Gell-Mann and Okubo also managed to calculate a formula for the 
as-yet undiscovered −Ω  particle.  Based on this mass, they predicted that it would not be 
able to decay strongly.  Predicting a new strongly interacting particle together with its 
spin, mass, and some aspects of its decay was considered a great triumph for the theory. 
 Can a similar formula be found for octets, such as the spin-1/2 baryons, or the 
spin-0 mesons?  It can, but the computation is a bit more difficult.  Since the mesons are 
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bosons, the matrix element will describe the square of the mass.  Including from the start 
the T8 mass terms, we would expect something akin to 

 ( )2 † †
8

lj i j i
M i j i jl

m au u b T u u′′ ′
′ ′= +  (4.40) 

where † *j i
i ju u≡ .  We now need to figure out all the possible ways of connecting the 

indices.  On the first term, we can’t connect an index to itself because 0i
iu = .  So there is 

only one way to connect the indices.  The first term ends up just contributing a constant a 
to the mass squared, and if this were the only term, all components of the meson 8 would 
have the same mass.  The second term turns out to be more complicated.  No index can 
be connected to the other index on the same factor, but this still leaves more than one way 
of connecting them, so in fact the b term actually stands for more than one term, each 
with their separate coefficient.  It is nonetheless possible to eliminate all the parameters, 
and to find a simple relationship between the various isospin multiplets of the mesons, 
which turns out to work pretty well.  A similar expression can be found relating the spin-
1/2 baryons, though in this case it will be a relationship between the masses, not their 
squares. 
 
 
F. Interactions 
 
 Although SU(3) is not a very good symmetry to describe the masses of the 
baryons and mesons, it would be expected to work better for the interactions.  For 
example, consider the matrix elements describing the decays of the heavy spin-3/2 
baryons to the lighter spin-1/2 baryons plus the spin-0 mesons.  We would expect such 
decays to be governed by matrix elements of the form *BM H B .  Naively, we would 
then anticipate that the decay rates would be proportional to these matrix elements, so 
that 

 ( ) 2* *B BM BM H BΓ → ∝  (4.41) 

The problem with this argument is that the computation of this decay rate, accomplished, 
say, with the help of Fermi’s Golden rule, would result in various kinematic factors 
which would depend on the masses of the particles involved.  In some cases, a matrix 
element may be non-zero, but the masses make the decay impossible.  Even when a 
decay is allowed, the matrix element may have some momentum dependence, which 
group theory cannot predict, and hence we cannot proceed all the way to ratios of decay 
rates.  Nonetheless, particle physics can give us some good guesses as to the momentum 
dependence, even when we do not understand the underlying theory, and combined with 
group theory, we can make good estimates of various decay rates. 
 Since this is a group theory course, we will focus exclusively on the matrix 
elements, and leave to particle physicists the work of interpreting the resulting ratios.  Let 
us attempt to write down the most general form of this matrix element *BM H B .  If, 

in the usual way, we write * *ijk
ijkB w B= , j i

i jM u M= , and j i
i jB v B= .  Then the 

matrix elements will be of the form 
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 ( ) ( )* † †i j klm

n p
BM H B v u w∼  (4.42) 

We will assume the interaction is SU(3) invariant, which means that we need to get rid of 
all the indices in (4.42) using invariant tensors.  There are too many indices up, so to get 
rid of them, we need to include abcε .  Because w is completely symmetric on its three 
indices, we can attach no more than one of the three indices of abcε  to it, and by the 
symmetry of w, it doesn’t matter which one.  It follows that the remaining indices must 
attach to the upper indices on †v  and †u .  It doesn’t matter which index attaches to 
which, because abcε  is completely anti-symmetric. 
 This leaves still two lower indices, one each on †v  and †u , and two upper indices 
on w.  These must be connected together, and again, since w is completely symmetric, it 
doesn’t matter which one connects to which.  So in summary, there is only one type of 
term in (4.42) which doesn’t vanish, namely 

 ( ) ( )* † †i j klm
ijkl m

BM H B a v u w ε=  (4.43) 

We can then compute, in a straightforward way, the corresponding amplitudes. 
 For example, let’s find the relative size of the matrix elements for the two 
processes p π++ + +Δ →  and * 0π+ +Σ →Λ .  These are both sensible decay rates to 
consider, since they conserve both charge and hypercharge.  Looking at equations (4.27), 
(4.29) and (4.30), we can extract the relevant components in tensor notation.  For the 

++Δ , the p+, and the π + , we have only one non-vanishing component, which makes the 
computation easy, and we quickly find 

 ( ) ( ) ( ) ( )3 2 3 2† † 111 † † 111
3 1 3211 1 1 1

1 1 1jp H a v u w a v u w aπ ε ε+ + ++Δ = = = − ⋅ ⋅  (4.44) 

For the *+Σ  there are three components, as there are for the 0Λ , but it isn’t too hard to 
figure out. 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

20 * † † † † 1
21

1 2 3 2† † 311 † † 131
123 3211 1 3 1

1 1 2 1 1
6 3 6 3 2

1 1

i j iklm kl
ijk i kl m l

H a v u w a v u w

a v u w v u w

a a

π ε ε

ε ε

+ +Λ Σ = =

⎡ ⎤= +⎢ ⎥⎣ ⎦
⎡ ⎤= ⋅ ⋅ − − ⋅ ⋅ =⎣ ⎦

 (4.45) 

We therefore have 

 

20 *

2
1
2

H

p H

π

π

+ +

+ + ++

Λ Σ
=

Δ
 (4.46) 

Unfortunately, we cannot then conclude anything about the relative decay rates, because 
we don’t know how to do the remaining kinematic integrals. 
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G. Quarks 
 
 Gell-Mann SU(3) helped relate and organize the vast number of strongly 
interacting particles that were at the time being discovered, but it left several patterns 
unexplained.  It turns out that all of the particles discovered fit into just a few simple 
irreps of SU(3).  The mesons always occur in either the 8 or 1 irreps of SU(3).  The 
baryons occur in either the 8, 10, or 1 irrep of SU(3).  The anti-baryons, being the anti-
particles of the baryons, occur in either the 8, 10  or 1 irrep of SU(3).  Why these irreps, 
and no others?  The baryons are always fermions, while the 
mesons are always bosons.  At the time, these were simply 
disconnected facts, with no underlying explanation.  In 1964, 
presumably while playing with SU(3), Murray Gell-Mann and 
George Zweig independently came up with a simpler 
explanation.  They proposes that all strongly interacting 
particles are actually made of fundamental particles called 
quarks.  There would be three quarks, which they named up, 
down, and strange (u, d, or s for short).  Together they would 
form a 3 irrep of SU(3), as sketched in Fig. 4-11.  In other 
words, everything is built out of quarks qi, where 

 1 2 3, , .q u q d q s= = =  (4.47) 

 The rules for combining quarks were simple.  Three quarks could be combined 
together to make a baryon.  Three anti-quarks could be combined together to make an 
anti-baryon.  And a quark and an anti-quark could be combined to make a meson.  
Following these rules, it is easy to understand why only certain combinations occur.  For 
example, because 3 3 8 1⊗ = ⊕ , it follows that one should only find the 8 and 1 irreps for 
mesons.  If we further assume that quarks are spin ½, it follows that the lightest mesons 
(with no orbital angular momentum) should be spin 0 or 1.  Similarly, a combination of 
three quarks should fall into a 3 3 3 10 8 8 1⊗ ⊗ = ⊕ ⊕ ⊕ , and hence must be in the 1, 8, or 
10 irrep.  They should also have spin ½ or spin 3/2. 
 The quarks were a bit odd.  Their charges were easy to work out:  the up had 
charge 2

3+ , while the down and strange each had charge 1
3− .  Such fractionally charged 

particles had never been seen, and nearly half a century later a quark in isolation has still 
never been observed.  Despite these and other problems, we now strongly believe that 
quarks are real.  The three quarks are assumed to have identical strong interactions.  
Isospin symmetry relates the up and down quarks, both of which have very small inherent 
mass, making this symmetry a relatively good approximation.  The strange quark, in 
contrast, is 150 MeV/c2 or so heavier, which is why, for example, there is an increasing 
progression of masses from the Δ ’s to the −Ω  as we increase the fraction of strange 
quarks inside the various spin 3/2 baryons. 
 We have since discovered there are other, heavier quarks as well: the charm, 
bottom, and top quarks (charge 2

3+ , 1
3− , and 2

3+  respectively).  Although these quarks 
are expected to have the same strong interactions as the three light ones, the masses are 
so much greater that they do not increase the apparent symmetries of particle physics.   
 

T3 

T8 

u d 

s 

 
Figure 4-11:  The 
three quarks form 
a 3 representation 
of SU(3). 
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H. Color 
 
 There is one glaring problem with quarks.  Consider, for example, the ++Δ , which 
must actually consist of three up quarks, uuu++Δ = .  Since it is a “light” baryon, it 
must have no internal angular momentum, which suggests the spatial wave function is 
completely symmetric.  Since it is spin 3/2, the spins must all be aligned, which tells us 
the spin wave function is also completely symmetric.  And there are three up quarks.  The 
conclusion is that the three quarks in the ++Δ  are in a completely symmetric state.  
Indeed, you can very well account for all the light baryons by simply assuming that there 
is an arbitrary rule that all quarks must be in a completely symmetric state.  This 
contradicts fundamental principles of particle physics, that spin-1/2 particles must be 
fermions, and have anti-symmetric wave functions.  We also have an additional problem: 
there is no explanation of why quarks combine only as three quarks, three anti-quarks, or 
quark plus anti-quark. 
 The solution to the anti-symmetry problem is simple.  Let’s assume that there is 
not one up quark, but three, u1, u2 and u3.  This additional index is called a color index, 
and the three colors are sometimes called red, green, and blue.  All three will be assumed 
to have exactly the same mass, charge, strong interactions, etc.  Then we can make a ++Δ  
by assuming that the three up quarks are different, so we make our wave function by 
writing 

 ( )1
1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 16

u u u u u u u u u u u u u u u u u u++Δ = + + − − − . (4.48) 

This expression can be written more succinctly by writing 

 1
6

ijk
i j ku u u ε++Δ = . (4.49) 

Since the “quark” part of the wave function is now anti-symmetric, the rest of the wave 
function (spin, for example) can be completely symmetric, without violating the rule that 
fermions must be in anti-symmetric wave functions.  Color is assumed to apply to all 
three (or six) quarks, so there are a total of nine (or eighteen) quarks. 
 Although this works, it seems terribly awkward.  We have suddenly tripled the 
number of particles.  And, come to think of it, why should the three up quarks have 
exactly the same mass?  They shouldn’t – unless there is actually some sort of symmetry 
connecting them.  If this were a course on group theory, we would now discuss this 
symmetry, . . . oh wait, this is a course on group theory! 
 Color is going to be assumed to be not just a label, but also a symmetry, 
specifically, the symmetry SU(3).  It cannot be emphasized too strongly that color SU(3) 
is different from Gell-Mann SU(3).  Gell-Mann SU(3) is an approximate symmetry that 
relates the up, down, and strange quarks.  It is violated by the mass terms for the three 
quarks, as well as electromagnetic and weak interactions.  In contrast, color SU(3) is an 
exact symmetry that relates the three colors of up (or down, or . . . ) quarks.  The masses 
are exactly equal, the charges of these three up quarks is exactly the same, and so on.  
The three up quarks lie together in the 3 irrep of SU(3). 
 Now, why is the particular combination (4.49) favored for the color part of the 
wave function?  What is special about this combination?  Recall that ijkε  is an invariant 
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tensor of SU(3).  As such, this particular combination of colors lies in the 1 irrep of color 
SU(3).  We are now ready to state the fundamental assumption about color:  The only 
combinations allowed are those that lie in the trivial (1) irrep of color SU(3). 
 Now, if each type of quark has three colors, and lies in the 3 irrep of SU(3), then 
the corresponding anti-quark lies in the 3  irrep of SU(3).  Now, according to the 
colorless assumption, what combinations of quarks and anti-quarks are allowed?  There 
will be one combination for every invariant tensor of SU(3).  This suggests three 
combinations of colors: 

 1 1 1
6 6 3

, ,ijk i j k j i
i j k ijk i jB q q q B q q q M q qε ε δ= = =  (4.50) 

Hence, our hypothesis leads naturally to the following conclusion: quarks bind only in 
the combinations three quarks (baryon), three anti-quarks (anti-baryon), or quark plus 
anti-quark (meson).  These are exactly the combinations observed in nature. 
 Of course, it may seem like we are still running in circles.  We started with Gell-
Mann SU(3), which seemed to work pretty well, then we showed how mathematically we 
could get everything to work by assuming things are made of quarks, though we had to 
make up some arbitrary rules (symmetric wave functions, only certain numbers of quarks, 
etc.).  We fixed a significant problem by then tripling the number of quarks, and added 
another symmetry (color SU(3)) to explain some patterns we saw.  Finally, we added a 
brand new rule (only colorless combinations), without any justification other than, “it 
works.”  And yet we are at the threshold of explaining the real nature of the strong force. 
 Let me lead you to it by analogy.  Suppose someone had never heard of 
electromagnetic forces, but was doing experiments with atoms.  She finds certain 
quantities are conserved, and starts assigning a “charge” of -1 to the electron, +2 to the 
helium nucleus, etc.  She describes this in terms of a U(1) symmetry.  Upon further 
experimentation, she discovers that atoms naturally tend to fall in the trivial 
representation of U(1); they tend to prefer to be chargeless.  Puzzled, she thinks about 
this, and suddenly the idea hits her that perhaps charge is not just some abstract concept, 
but actually has a force associated with it.  Chargeless combinations are preferred, not 
because of some arcane rule, but because “opposites attract” and therefore combinations 
in the trivial representation of U(1) tend to have the least energy.  Hence 
electromagnetism is discovered. 
 The analogy is as follows.  Imagine that color SU(3) is not just a symmetry, but a 
gauge force, analogous to electromagnetism.  Color-neutral combinations; that is, 
combinations which are in the trivial irrep of color SU(3) will naturally have the lowest 
energy.  This gauge force is much stronger than electromagnetism; in electromagnetism, 
the strength of the force is described in terms of the fine structure constant 1

137α = , but 
the strong force has 10Sα ≈ . 
 Just as the electromagnetic field has a particle (the photon) associated with it, 
there will be particles associated with color SU(3).  The way it works out is that there will 
be one strongly interacting gauge particle (gluon) associated with each of the eight 
generators of SU(3).  Each of the gluons has spin 1, like the photon.  Unlike the photon, 
because the generators of SU(3) do not commute with each other, the gluons interact with 
each other in complicated ways.  This, together with the non-perturbative strength of the 
strong coupling, make detailed calculations very difficult.  For example, suppose a quark 
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and anti-quark of opposite colors were near each 
other.  We would expect there to be color flux lines 
(akin to electric field lines for electromagnetism) 
connecting them.  However, color flux lines (unlike 
electric field lines) actually have color themselves, 
and are attracted to each other.  This causes the color 
flux lines to bunch together to form a flux tube, as 
sketched in Fig. 4-12 at right.  As you attempt to pull 
a quark and anti-quark apart, the flux tube does not 
get larger and more spread out, instead, it stays 

constant 
size, and 
hence the 
force 
attracting 
the quark 
and anti-
quark 
(estimated 
to be about one ton!) does not diminish with 
distance.  Eventually, the color flux tube has 
sufficient energy associated with it that it can 
simply create a quark anti-quark pair, and we 
simply end up with two separate mesons, as 
sketched in Fig. 4-13 at left.  Hence it is 
believed to be impossible to actually separate a 
quark by itself.  Quarks and anti-quarks only 
appear in colorless combinations. 
 This color SU(3) is believed to be the 
true strong force.  The “strong force” that we 
encounter in nuclear physics, for example, is 
simply a short-range effect caused by the 
proximity of two color-neutral combinations, 
akin to the van der Waal’s interaction between a 
pair of neutral atoms. 
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Figure 4-12:  Two electric 
charges have widely 
separated electric field lines 
(top).  In contrast, the color 
field lines tend to have field 
lines tightly bundled into a 
“flux tube.” 
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Figure 4-13:  An attempt is made 
to separate a pair of quarks in a 
meson.  An initially small meson 
(top) has its two quarks separated 
by increasing distance (middle), but 
the force between then remains 
roughly constant.  A flux tube 
connects them whose strength is 
roughly independent of distance.  
Eventually, the flux tube breaks, 
(bottom) producing a new quark 
anti-quark pair, resulting ultimately 
in two mesons. 


