
 Physics 745 - Group Theory 
 Solution to Final, Spring 2009  
 
You may use (1) class notes, (2) the text, (3) former homeworks and solutions (available 
online), or (4) any math references, such as integral tables, Maple, etc, including any 
routines I provided for you.  If you cannot solve an equation, try to go on, as if you knew 
the answer.  Feel free to contact me with questions.  Note that the final problem is more 
like a homework problem, you should feel free to ask me for help on it.  Each question is 
worth 20 points out of a total of 100 points. 

Work: 758-4994 Home: 724-2008 Cell: 407-6528 

 
1. The proper icosohedral group is a 60 

element group.  Its character table is 
given at right.  The irreps have been 
unimaginatively labeled as A, B, C, 
D, and E.  For each of the five tensor 
products with E, break the tensor 
product into appropriate irreps; i.e., 
work out A E⊗ , B E⊗ , … , E E⊗ . 

 
 The table has been extended to 
include the characters for these tensor 
products.  The character of the tensor 
product is just the product of the characters 
for the individual irreps.  Obviously, A E E⊗ = , but the others are not as obvious.  For 
B E⊗  or C E⊗ , the number of contributions like E is ( )1 15 5 15 1 1 60 1⋅ ⋅ + ⋅ − ⋅ =⎡ ⎤⎣ ⎦ , and 

the number of copies of B or C is ( ) ( )1 15 3 15 1 1 60 1⋅ ⋅ + ⋅ − ⋅ − =⎡ ⎤⎣ ⎦ , and the number of 

copies of D is [ ]1 15 4 60 1⋅ ⋅ = .  This accounts for all 15 dimensions.  For D E⊗ , we 

have ( ) ( )1 20 5 20 1 1 60 2⋅ ⋅ + ⋅ − ⋅ − =⎡ ⎤⎣ ⎦  copies of E, ( )1 20 4 20 1 1 60 1⋅ ⋅ + ⋅ − ⋅ =⎡ ⎤⎣ ⎦  copies 

of D, and [ ]1 20 3 60 1⋅ ⋅ =  copies of B or C.  Finally, for E E⊗ , we have  

[ ]1 25 4 20 1 1 60 2⋅ ⋅ + ⋅ ⋅ =  copies of D, ( )1 25 5 20 1 1 15 1 1 60 2⋅ ⋅ + ⋅ ⋅ − + ⋅ ⋅ =⎡ ⎤⎣ ⎦  copies of E, 

( )1 25 3 15 1 1 60 1⋅ ⋅ + ⋅ ⋅ − =⎡ ⎤⎣ ⎦  copy of B or C, and [ ]1 25 1 20 1 1 15 1 1 60 1⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =  copy 
of A.  In summary, we have 

,
,

,
.

A E E
B E C E B C D E
D E B C D E E
E E A B C D D E E

⊗ =
⊗ = ⊗ = ⊕ ⊕ ⊕
⊗ = ⊕ ⊕ ⊕ ⊕
⊗ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

 

 

I E 20C3 12C5 12C5
2 15C2

A 1 1 1 1 1 
B 3 0 1 5

2
+  1 5

2
−  -1 

C 3 0 1 5
2
−  1 5

2
+  -1 

D 4 1 -1 -1 0 
E 5 -1 0 0 1 

A E⊗  5 -1 0 0 1 
B E⊗  15 0 0 0 -1 
C E⊗  15 0 0 0 -1 
D E⊗  20 -1 0 0 0 
E E⊗  25 1 0 0 1 



2. The group SO(5) has ten generators, which can be labeled abT , where 

{ }, 1, 2,3, 4,5a b∈ , and a b≠  (they are defined in such a way that ab baT T= − , 
which is why there are only ten of them).  They satisfy the commutation relations 

[ ] ( ),ab cd ac bd bd ac ad bc bc adT T i T T T Tδ δ δ δ= + − −  

 where abδ is the Kronecker delta function. 
(a) Let 1 13 ,J T= 2 23 ,J T=  3 12J T= .  Show that J generates an SU(2) subgroup of 

SO(5), i.e., show all three of the commutators[ ],a b abc cJ J i Jε= . 
 
 Let’s just work them all out.  We have 

[ ] [ ] ( )
[ ] [ ] ( )
[ ] [ ] ( )

1 2 13 23 12 33 33 12 13 32 32 13 12 3

2 3 23 12 21 32 32 21 22 31 31 22 31 31 1

3 1 12 13 11 23 23 23 13 21 21 13 23 2

, , ,

, , ,

, , .

J J T T i T T T T iT iJ

J J T T i T T T T iT iT iJ

J J T T i T T T T iT iJ

δ δ δ δ

δ δ δ δ

δ δ δ δ

= = + − − = =

= = + − − = − = =

= = + − − = =

 

 
(b) At right are given the weight diagram of two irreps 

of SO(5) in the basis of T12 and T34, i.e., the 
eigenvalues of these two generators are plotted..  
The tick marks are at one unit.  For each of these 
representations (which I’ll call the “4” and the “5”), 
work out what irreps of SU(2) these break into. 

 
 To figure this out, we need to figure out the 
eigenvalues of J3, which should always be integer or half 
integer.  For the four dimensional irrep, it’s pretty clear that 
these are 1 1 1 1

2 2 2 2, , ,− − .  The heighest weight is 1
2 , so there 

must be a ( )1
2  representations.  Removing the corresponding 

weights, which are 1 1
2 2,− , leaves us with the weights 1 1

2 2,−  
again, which is simply another ( )1

2 , so ( ) ( )1 1
2 24 → ⊕ . 

 For the 5, we see that the weights are 1,0,0,0,1− .  The highest weight is 1, so 
there must be a ( )1  representation, which should have weights of 1,0,1− .  This leaves the 

weights 0,0 , which clearly correspond to two copies of the ( )0  representation, so 

( ) ( ) ( )5 1 0 0→ ⊕ ⊕ .  In conclusion, we have 

( ) ( ) ( ) ( ) ( )1 1
2 24 and 5 1 0 0→ ⊕ → ⊕ ⊕ . 

 

T12 

T34 

T12 

T34 



3. An atom in the state njm   with j = 1 is about to decay via electric dipole 

radiation to the state n j m′ ′ ′ .  As argued in homework set 25, the probability of 
it going from an initial state I to a final state F is proportional to 

( ) ( )
1 21

1
q

q

I F F r I
=−

Γ → = ∑  

 where ( )1
qr  is the spherical tensor operator corresponding to the vector operator 

r. 
(a) What are the possible final values of j’? 

 
 Since you are combining a j = 1 state with a k = 1 tensor operator, the values of j’ 
will run from j k−  to j k+ , so j’ = 0, 1, or 2. 
 

(b) In fact, it is going to decay to a state with 1j′ = .  Using the Wigner Eckart 
Theorem, find the relative rate of decay 

( )njm n j m′ ′ ′Γ →  

 for all non-vanishing possible values of m and m’. 
 
According to the Wigner-Eckart theorem, the matrix element is proportional to the 
Clebsch-Gordan coefficient 

( )1 1; 11; 1qn j m r njm j qm j m qm m′ ′ ′ ′ ′ ′∝ =  

It will be non-vanishing only if m q m′ = + , which means we don’t really have that many 
components to calculate.  We find, with the help of the online Clebsch Maple routine, 
that 

1
2

1
2

1
2

11;10 11 11;01 11

11;1, 1 10 11; 1,1 10 , 11;00 10 0,

11; 1,0 1, 1 11;0, 1 1, 1

= − =

− = − − = =

− − − = − − =

 

We then square these to get the relative decay rates, as given in the table above. 
Interestingly, all the allowed rates are equal, except for the 0  0 transition, which has 
zero probability. 
 

 

m =  -1 0 1 
1m′ = −  1

2  1
2  0 

0m′ =  1
2  0 1

2  
1m′ =  0 1

2  1
2  



4. Although the 1, 8, and 10 irreps of Gell-Mann SU(3) are all that are used when 
we look at combinations of up, down, and strange quarks, other possibilities 
occur with heavier quarks.  For example, the six 
lightest spin 3/2 baryons containing a charm quark 
are listed with their mass in the table at right.  These 
particles fit into the 6 irrep of SU(3), which can be 
written in the form (note: the c is not an index, it 
represents the presence of a charm quark) 

* *
,

ij
c c ijB u B=  with the assignments: 

*0 22 * 21 12 * 111
2

*0 32 23 * 31 13 *0 331 1
2 2

: 1, : , : 1,

: , : , : 1.
c c c

c c c

u u u u

u u u u u

+ ++

+

Σ = Σ = = Σ =

Ξ = = Ξ = = Ω =
 

(a) Work out a formula for the mass of these objects 
in terms of the u’s.  Include not only an SU(3) 
respecting piece, but also include a piece where the symmetry is broken 
proportional to T8.  Include unknown parameters as needed. 

 
 The general form for the mass will take the form 

( )*
* * † †

8
c

nkl kl
c c ij ij mB

m B H B au u bu u T= = +  

Now we need to connect up the indices.    We have to put all the up indices with down 
indices.  In the first term, because of the symmetry of u, it doesn’t matter how we match 
them.  In the second term, we have to put one up index and one down index of T8 each 
with u and †u .  It doesn’t matter which with which, because of symmetry.  The 
remaining indices then go together.  So we have 

( )*
* * † †

8
c

iij kj
c c ij ij kB

m B H B au u bu u T= = +  

(b) Write an expression for the mass of one of the *
cΣ ’s, one of the *

cΞ ’s, and the 
*0
cΩ  in terms of the parameters you chose in part (a).  Find a linear 

relationship between them. Predict, on the basis of your relationship, the 
mass of the *0

cΩ . 
 
 This is straightforward, at least to start with.  I’ll always do the neutral one 

( )

( ) ( ) ( ) ( )

( )

*0

*0

*0

2† 22 † 22 1
22 22 8 2 2 3

2 3† 23 † 32 † 23 † 32 1 1 1 1 1 1
23 32 23 8 32 8 2 2 2 22 3 2 3 3

1
4 3

3† 33 † 33 1
33 33 8 3 3

,

,

,

c

c

c

m au u bu u T a b

m au u au u bu u T bu u T a b

a b

m au u bu u T a b

Σ

Ξ

Ω

= + = +

= + + + = + + ⋅ − ⋅

= −

= + = −

 

Name Mass I I3 
*
c
++Σ  2518 1 +1 

*
c
+Σ  2517 1 0 

*0
cΣ  2518 1 -1 
*
c
+Ξ  2647 ½ +½ 

*0
cΞ  2646 ½ -½ 
*0
cΩ  ???? 0 0 

All masses in MeV/c2 



It is then easy to show that the sum of the two extremes is equal to twice the one in the 
middle: 

*0 *0 *0
1

2 3
2 2

c c c
m m a b m

Σ Ω Ξ
+ = − =  

( )*0 *0 *0
22 2 2646.5 2518 2775 MeV/

c c c
m m m c

Ω Ξ Σ
= − = − =  

The actual mass is around 2768 MeV/c2; however, all of the masses have measurement 
errors of a couple of MeV or so, so we can’t actually calculate how much we missed by. 
 
 
Note:  This last problem is more like a homework problem; if you are having difficulty 
with it, come see me, and we will get you unstuck. 
 
5. The last day of class, I presented very abbreviated proofs that certain Dynkin 

diagrams are not allowed.  You are going to elaborate one of them.  The diagram 
at right is an illegal Dynkin diagram, as you will demonstrate. 
(a) Define one of the roots to have 

length r.  Write the length of each of 
the five simple roots in terms of r. 

 
 The three roots ri are all connected by single lines, and hence must have the same 
length.  The s roots are all shorter by a factor of 2 .  Hence we have 

2 2 2 2 2 2 21
1 2 3 1 2 2,r r= = = = =r r r s s  

 
(b) For every pair of simple roots for which the dot product doesn’t vanish, 

write the dot product between them in terms of r. 
 
 Only roots that are connected have non-vanishing dot-products.  We have 

2 2 2 22 31 2
1 2 1 2 3 22 2

1 2

2 2 2 23 1 1 2 1
3 1 3 1 2 1 22 2

3 1

222 , 2 ,

2 22 , 2 .

r r

r r

⋅⋅
⋅ = = − ⋅ = = −

⋅ ⋅
⋅ = = − ⋅ = = −

r rr rr r r r r r
r r
r s s sr s r s s s
r s

 

 
(c) Show that an appropriate combination of the roots above vanishes; i.e., that 

the square of the combination is zero, and hence this diagram is illegal. 
 
 We use the combination given by the numbers, so we have 

( )

( )

22
1 2 3 1 2

2 2 2 2 2
1 2 3 1 2 1 2 2 3 3 1 1 2
2 1 1 1

2 2 2

2 3 4 2

4 9 16 4 4 12 24 16

1 4 9 16 4 2 6 12 8 0.r

= + + + +

= + + + + + ⋅ + ⋅ + ⋅ + ⋅

= + + + ⋅ + ⋅ − − − − ⋅ =

v r r r s s

r r r s s r r r r r s s s  

r1 r2 r3 s1 s2 

1 2 3 4 2 


