
 Physics 745 - Group Theory 
 Solutions to Midterm Exam  
 
1. Let us define three more matrices, F, G, and H, defined by 

0 1 1 0 1 0
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The original set is not a group, since many of 
the products are not contained within the group, 
as we can see in the table at right (for example, 
row C).  If we augment the group with the 
indicated matrices, it now is a group.  This can 
be demonstrated easily, since (1) as shown at 
right, it satisfies closure, (2) obviously, E is the 
identity element, (3) as we will demonstrate 
presently, every element has an inverse, (4) the 
associative property is a general property of 
matrices, and need not be specifically 
demonstrated.  In fact, it is easy to see that the matrices represent the actual rotations of  a 
2D square, which, depending on your nomenclature, is C4V or D4. 
 The inverses are the numbers that you multiply to get E.  A quick look at the list 
tells us that everything is its own inverse, except for C and D, which are inverses of each 
other.  
 As always, E is in a class by itself, and since H 
commutes with everything, it must be in a class by itself.  It’s 
easy to see, for example, that 1B CB D− = , so C and D are in 
the same class.  Furthermore, 1C BC F− = , so B and F go 
together.  Finally, 1C AC G− = , so A and G go together.  The 
classes are therefore { }, , , ,E H AG BF CD , so there are five 
classes and five irreducible representations.  Four of them 
have dimension 1, and the last dimension 2. 
 
2. The C2 element was originally a 4-fold rotation axis, so in 
Oh, it corresponds to C4

2.  The two reflection planes each 
correspond to JC4

2, since they can be achieved by performing 
a 180 degree rotation around some other 4-fold axis of the 
cube and then performing inversion.  And the identity is the 
identity. 
 At right is the character table for C2V in the notation of 
Tinkham, extended a bit to include the Oh irreducible 
representations.  It is not too hard to then work out how the irreps of Oh break up under 
the reduced symmetry: 

⋅ E A B C D F G H
E E A B C D F G H
A A E D F B C H G
B B C E A G H D F
C C B G H E A F D
D D F A E H G B C
F F D H G A E C B
G G H C B F D E A
H H G F D C B A E

C2V E C2 σV σV’
A1 1 1 1 1 
A2 1 1 -1 -1 
B1 1 -1 1 -1 
B2 1 -1 -1 1 
Γ1 1 1 1 1 
Γ2 1 1 1 1 
Γ12 2 2 2 2 
Γ15’ 3 -1 -1 -1 
Γ25’ 3 -1 -1 -1 
Γ1’ 1 1 -1 -1 
Γ2’ 1 1 -1 -1 
Γ12’ 2 2 -2 -2 
Γ15 3 -1 1 1 
Γ25 3 -1 1 1 
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3. The point group for this structure is D6h.   There is no inherent guarantee that any 
point will have this symmetry, but in this case, the exact center of each hexagon is such a 
point. The classes associated with this point are: 

{ }2 3
6 6 6 2 2 6 3, 2 , 2 , ,3 ,3 , , 2 , 2 , ,3 ,3h V VE C C C C C S S Jσ σ σ′ ′′ ′  

There are other ways of writing this as well, equally 
valid; for example, the second half of this list could be 
written as J times the first half (I have essentially written 
it as hσ  times the first half). 
  The symmetry associated with any carbon atom, 
on the other hand, is only D3h, since rotations by 60 
degrees do not leave the lattice unchanged.  The classes 
are  

{ }3 2 3, 2 ,3 , , 2 ,3h VE C C Sσ σ′ . 

 The two red vectors listed are primitive lattice vectors.  If the length of the CC 
bonds is a, these vectors will be 

( ) ( )3 33 3
1 22 2 2 2ˆ ˆ ˆ ˆ,a a= + = − +T x y T x y  

There are several other choices about how to draw these vectors. 
 The reciprocal lattice vectors G1 and G2 tend to be perpendicular to T2 and T1 
respectively; this gives their directions as the green vectors.  Their exact values are 

( ) ( )1 1 1 1
1 23 33 3

2 2ˆ ˆ ˆ ˆ,
a a
π π

= + = − +G x y G x y  

It is then an easy matter to confirm that 2a b abπδ⋅ =T G , as it should. 
 The exact form of the structure function will depend on the choice of origin.  If it 
is as marked, then the atoms will be at ( )1

1 23cσ ± = ± −T T  and 2 1
2 1 23 3cσ = +T T .  If we 

write our reciprocal lattice vectors as 1 1 2 2m m= +G G G , then ( )1 22 3C m mσ π±⋅ = ± −G .  
As a consequence, our form factor will be 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

2 2
2 32

2

2 8
3 3

a

a

i m mi
a C

a
S F e F e

a
ππ π

δ −⋅

±

Δ
Δ = Δ − Δ = Δ

Ω ∑ ∑ ∑ ∑G σ

G σ

k
k k G k k

I
 

I have replaced the usual ( )32π  by ( )22π , representing the fewer number of dimensions, 
and the “volume” has been replaced by the two dimensional area, since that’s all we have 
here.  The imaginary parts of the final sum cancel out, and we end up with 
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This expression never vanishes, though it is suppressed unless m1 - m2 is a multiple of 
three. 
 
4. First note that the states are always eigenstates of J as already written, so if we know 
how they transform under proper rotations, and how they transform under J, the second 
half of the table will follow automatically from the first half.  hence by looking at J alone, 
we can tell whether we will want the first half of the table given or the second half. 
The states of the form lllψ  are unchanged under anything that permutes them, as well as 
anything that changes two of their signs, so in summary, anything with an even number 
of bars, which are the classes E, C4

2, C3, so the relevant matrix must be +1 under each 
case.  The remaining ones will be 
+1 if l is even, and -1 if l is odd, 
so the table at right tells you the 
breakdown. 
  For the states 

, ,llm lml mllψ ψ ψ , we see that under permutations they will transform into each other, which 
suggests a three-dimensional representation.  Under cyclic permutation (C3), none of 
them changes into themselves, so the trace will be zero, i.e. ( )3 0Cχ = . Under C4

2, one 
of them is guaranteed to stay the same, while the other two will either change sign (if m + 
l is odd) or not, so the trace is 3 (m + l even) or -1 (m + l odd).   For C2, you always 
interchange two of the indices (leaves only one of them the same), then you reverse either 
the remaining index (+1 if m is even, -1 otherwise) or reverse all three (the same).  Hence 
the result is +1 (m even) or -1 (m odd).  For C4, you interchange a pair of the indices 
(only one unchanged), then reverse one of the ones you just swapped, giving you +1 (l 
even) or -1 (l odd).  
Finally, J reverses all 
three coordinates, so it 
is +3 (m even) or -3 (m 
odd).  The 
corresponding table is at 
right.  Note that when l 
+ m is even, the representation is reducible.  
 For the six states lmnψ , there are eight possibilities, but only the number of odd and 
even indices matters, so this reduces to four cases.  The only types of rotations that can 
have a non-zero character will be those where nothing is permuted, which are E, C4

2, and 
J.  For C4

2, we are negating two coordinates at a time, so we get a +2 for each pair of lmn 
that match parity, and a -2 for each pair of lmn of opposing parity.  The result is a total of 
+6 if lmn are all the same parity, and –2 if lmn contain two of one parity and one of the 
other parity.  As for J, all six wave functions will be +1 if the sum of lmn is even, and all 
six will be minus if the sum is odd.  The table below gives the final results. 

l E 3C4
2 6C4 6C2 8C3 J ? 

even 1 1 1 1 1 1 Γ1 
odd 1 1 -1 -1 1 -1 Γ’2 

l m E 3C4
2 6C4 6C2 8C3 J ? 

even even 3 3 1 1 0 3 Γ1 + Γ12 
even odd 3 -1 1 -1 0 -3 Γ15 
odd even 3 -1 -1 1 0 3 Γ’15 
odd odd 3 3 -1 -1 0 -3 Γ’1 + Γ’12

l m n E 3C4
2 6C4 6C2 8C3 J ? 

even even even 6 6 0 0 0 6 Γ1 + Γ2 + 2Γ12 
even even odd 6 -2 0 0 0 -6 Γ15 + Γ25 
even odd odd 6 -2 0 0 0 6 Γ’15 + Γ’25 
odd odd odd 6 6 0 0 0 -6 Γ’1 + Γ’2 + 2Γ’12 


