Physics 215 – Elementary Modern Physics Equations for Final Exam

Cosmology and the Big Bang Theory are not on the final exam

The following <u>new</u> equations you should have memorized, and understand how to use them:

Atomic Mass, Charge, Neutron Number: Q = Ze A = Z + N

Approximate mass of an atom: $M \approx A$ u

Avogadro's number: $N_A = \frac{1 \text{ g}}{1 \text{ u}}$

Types of radioactive decay:			
Туре	ΔZ	ΔA	Q
α	-2	-4	$\left(M_P - M_D - M_{\rm He}\right)c^2$
β	+1	0	$\left(M_{P}-M_{D} ight)c^{2}$
e. c.	-1	0	$(M_P - M_D)c^2$
$eta^{\scriptscriptstyle +}$	-1	0	$\left(M_P - M_D - 2m_e\right)c^2$
γ	0	0	$(M_P - M_D)c^2$

Radioactivity:
$$R = \lambda N$$
, $N = N_0 e^{-\lambda t}$, $R = R_0 e^{-\lambda t}$, $\lambda = \frac{\ln 2}{t_{1/2}}$

Particle Physics Things to know:

- How are anti-particles related to particles? What's their mass, charge, strangeness, baryon number, spin, etc.?
- What distinguishes fermions and bosons?
- What are the four forces of nature? Which one isn't part of particle physics?
 - Electromagnetism + Weak = electroweak
 - How can tell which of the three forces is involved (memorize the chart)
- What are the conservation laws for particles? Are they always conserved?
 - How many quarks/anti-quarks there are in baryons, anti-baryons, and mesons?
 - What's the name of the three most common types of quarks?
 - What are the charges of the three most common types of quarks?
 - How to tell what quarks something is made of based on type of particle and strangeness
- Which particles carry the three forces? (there are two for the weak force)

The following review equations you should also memorize:

Speed of light:
$$c \approx 3 \times 10^8$$
 m/s Lorentz factor: $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$

Time dilation: $\Delta t = \gamma \tau$ Length contraction: $L = L_p / \gamma$

Energy:
$$E = \gamma mc^2$$
, $\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$

Math with complex numbers: $i^2 = -1$, $e^{i\theta} = \cos\theta + i\sin\theta$ $(x+iy)^* = x-iy$ Basic waves: $\cos(kx - \omega t)$ or $\sin(kx - \omega t)$ or $e^{i(kx - \omega t)}$ For light waves: $c = \lambda f$ Quantum waves: $E = hf = \hbar \omega$ $p = \frac{h}{\lambda} = \hbar k$ Planck's constants: $\hbar = h/2\pi$ Size of atoms and nuclei: $a \approx 10^{-10}$ m $R \approx 10^{-15}$ m Uncertainty relations: $\Delta x \Delta p \ge \frac{1}{2}\hbar$ Momentum operator in 1D: $p = \frac{\hbar}{i} \frac{\partial}{\partial x}$ in 3D: $p_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$, $p_y = \frac{\hbar}{i} \frac{\partial}{\partial y}$, $p_z = \frac{\hbar}{i} \frac{\partial}{\partial z}$ Schrödinger's Equation in 1D: $i\hbar \frac{\partial}{\partial x} \Psi(x,t) = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial x^2} \Psi(x,t) + V(x,t) \Psi(x,t)$

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = -\frac{2m}{2m} \frac{\partial}{\partial x^2} \Psi(x,t) + V(x,t) \Psi$$
$$E\psi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + V(x)\psi(x)$$

Probability of finding a particle in a range: $P(a < x < b) = \int_{a}^{b} |\psi(x)|^{2} dx$

Angular momentum values: $L^2 = \hbar^2 (l^2 + l), \qquad L_z = \hbar m$

Spin values: $s = \frac{1}{2}$ $S^2 = \hbar^2 \left(s^2 + s\right) = \frac{3}{4}\hbar^2$ $S_z = \hbar m_s$

 Restrictions on quantum numbers:
 n = 1, 2, 3, ... l = 0, 1, 2, 3, ..., n-1

 m = -l, -l + 1, ..., 0, ..., l $m_s = \pm \frac{1}{2}$

The following new equations you need not memorize, but you should know how to use them if given to you:

Basic Masses: $u = 931.494 \text{ MeV}/c^2 = 1.661 \times 10^{-27} \text{ kg}$ Nuclear Decay: $2m_ec^2 = 1.02200 \text{ MeV},$ $M_{\text{He}} = 4.002602 \text{ u}$ Range of forces: $d = \frac{\hbar c}{mc^2}$ Planck's Constants: $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s} = 4.136 \times 10^{-15} \text{ eV} \cdot \text{s}$ $\hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s} = 6.582 \times 10^{-16} \text{ eV} \cdot \text{s}$ Gravitational time dilation & Red-shift: $\tau = t \sqrt{1 - \frac{2GM}{c^2 r}}$ Gravitational Red-shift: $\lambda = \lambda_0 \left(1 - \frac{2GM}{c^2 r}\right)^{-1/2}$ Schwarzschild radius of a black hole: $R_s = \frac{2GM}{c^2}$

In addition to these equations, any equation that appeared on a previous exam may be tested on this exam. But if it isn't listed here, you don't need to memorize it.

Layout of the exam: Below is an outline of the exam

This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered.

Part I: Multiple Choice (mixed new and review questions) [50 points]

For each question, choose the best answer (2 points each)

[questions 1-25]

Part II: Short answer (review material) [20 points]

Choose **two** of the following three questions and give a short answer (1-3 sentences) (10 points each).

[questions 26-28]

Part III: Short answer (new material) [30 points]

Choose **three** of the following four questions and give a short answer (1-3 sentences) (10 points each).

[questions 29-32]

Part IV: Calculation (review material) [40 points]

Choose **two** of the following three questions and perform the indicated calculations (20 points each)

[questions 33-35]

Part V: Calculation (new material): [60 points]

Choose **three** of the following four questions and perform the indicated calculations (20 points each)

[questions 36-39]

The exam will be in the usual room where we meet on Monday, December 6, at 2:00 PM

You will have 2 hours and 40 minutes for the final exam Those with accommodations will have 4 hours for the final exam