
General Relativity 
 
 Quantum Field Theory – also known as particle physics – is wonderful, and has 
had a host of successes.  It successfully accounts for all known effects at the microscopic 
level, and a good many effects at the macroscopic level as well.  There is, however, one 
glaring flaw: it does not include the effects of gravity.  The problem is that we have no 
experimental measurements of gravity at the microscopic level.  The gravitational 
attraction between a pair of protons is many orders of magnitude smaller than their 
electrostatic repulsion, and as a consequence, we have no clue how to build a theory of 
gravity involving fundamental particles. 
 As a first step, however, it seems like it would be a good idea to try to at least 
build a relativistic theory of gravity; that is, one that combines Einstein’s special theory 
of relativity with gravitational theory.  This goal was achieved by Einstein, and the 
resulting theory is known as the general theory of relativity, usually referred to as general 
relativity or even just GR.  This theory is rather complicated, and there are several 
subtleties which need to be discussed, but I hope that I can impart at least some of the 
flavor of what is going on in this short handout. 
 
 

A. The Principle of Equivalence 
 
 One of the keys that helped Einstein understand what was going on in GR was the 
principle of equivalence.  Consider first the formula for the force between a pair of 
objects, which is given by 
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Where G is Newton’s constant, M and m are the two masses, and r is their separation.  
Now, suppose we have an object of mass m, and we let this force act on it.  The 
acceleration that the mass m feels will be given by 
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Note that the result is independent of the mass m.  Hence all objects fall at exactly the 
same rate, as first pointed out by Galileo.  This property of gravity is unlike other forces; 
for example, electric and magnetic forces do not behave this way at all.  Indeed, the fact 
that objects fall at the same rate has been tested with extreme precision, and works 
extremely well. 
 Can we think of any other cases where force is proportional to mass?  Consider 
centrifugal force, the apparent force felt by a mass m as viewed in a rotating frame of 
reference.  This force is given by 
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Hence, for example, if you are on a merry-go-round, and you release a ball, you will find 
that it apparently accelerates away from you.  Furthermore, if you release two balls of 
different masses, you will find that they accelerate away from you at exactly the same 
rate.  The reason, of course, is that the balls aren’t accelerating at all, it is you who are 
accelerating, and the balls are simply going in a straight line.  If you were unaware of 
your rotation, you might attribute the acceleration of the balls to some sort of weird 
gravitational effect, but this is an illusion because you are simply viewing the balls 
in an accelerating reference frame. 
 Now, if you were on the merry-go-round, and you wish to see that the balls 
are not really accelerating, all you need to do is let go.  You, like the balls, will 
move away from the merry-go-round in a straight line, and you won’t see them 
accelerating at all.  In this frame of reference, there will be no centrifugal force at 
all. 

 Does this analogy work for gravity?  Yes!  Suppose you are 
holding some balls and you drop them – they will apparently 
accelerate.  Now suppose we put you inside an elevator, and then 

(assuming Wake Forest has already received your last tuition check) cut the 
cable of the elevator at the same time you drop the balls.  You and the balls 
will fall together, and you will see the balls hover in apparent weightlessness as 
you both plummet to the ground.  As far as you can tell, there’s no gravity.  

 Indeed, this is how weightlessness is achieved in the space shuttle.  
The astronauts, and the objects inside the shuttle, are all falling to (orbiting) 
the Earth at exactly the same rate.  They are not, as is popularly supposed, 
so far from the Earth that gravity is negligible; indeed, gravity is only a few 
percent weaker for them than it is for us on the surface of the Earth.  It 
is just that they are in a falling reference frame, and it looks like there is 
no gravity; in a sense, there is no gravity. 
 Alternatively, imagine we place you and the elevator in space, 

and then attach the cable to a rocket ship and let the rocket ship accelerate, towing 
the elevator at 9.8 m/s2.  As far as you can tell, from inside the elevator, you will 
experience an apparent force of gravity caused by the fact that the elevator, 
indeed, anything you might use to produce a “reference frame,” is accelerating at 
a uniform rate.  This principle is known as the principle of equivalence: 

The effects of gravity are indistinguishable from 
the effects of being in an accelerated reference frame 

 Einstein was able to use the idea of the principle of equivalence to learn a great 
deal about gravity, and accurately predicted several observed phenomena, but ultimately 
these simply led him to the general theory of relativity, in which this idea is fully 
developed.  We will therefore try to move towards this general theory.  There is, however, 
a problem:  we have only discussed ordinary, boring, Cartesian coordinates in special 
relativity.  We need to expand our view of special relativity so that we can work in other 
coordinates.  Specifically, we will work in spherical coordinates, but in fact the 
mathematics of general relativity is so powerful that it can work in virtually any 
coordinate system, no matter how skewed or distorted it may be. 
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B. The Distance Formula Again 
 
 We will begin at the beginning, the very foundation of special relativity, namely, 
the distance formula.  Specifically, we will work with the formula for proper time, which 
was given by* 

       2 2 2 22 2 2c c t x y z          

This tell us how much time is perceived by an object as it moves from one point to 
another in space over a period of time – provided that object moves at a steady speed and 
in a straight line.  If one moves in some more erratic fashion, we must imagine breaking 
up the trip into several small steps, each of which is so short that we can treat each 
segment as a straight line.  Mathematically, we just replace each of the differences above 
by infinitesimal differences, x dx   for example, to find a formula for the proper time 
for an infinitesimal line segment: 

       2 2 2 22 2 2c d c dt dx dy dz      

If you are familiar with infinitesimals, this formula may already make sense, but if you 
aren’t rest assured that this formula can be massaged into formulas that make more sense 
for you.  For example, if we are given an arbitrary path through spacetime, denoted by 
functions x(t), y(t), and z(t), we can use this formula to find the proper time for the whole 
trip.  A little mathematical manipulation will show you that 
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              
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Yes, I know it looks messy, but we won’t be using this to do any actual problems.  
You’re welcome. 
 Now, in the absence of forces, we know that objects move at a steady pace in a 
straight line.  We normally think of a straight line as the shortest distance between two 
points, but in relativity, it turns out that a constant velocity motion along a straight line is 
actually the longest proper time between two events in space time.  This path, which 
maximizes the proper time between two events, is called a geodesic, and I will state the 
following “geodesic principle”: 

An object with no forces acting on it will always follow a geodesic, 
which is the longest proper time path between two points in spacetime. 

 This principle will remain the same as we consider different coordinate systems, 
whether we switch to spherical coordinates, or rotating coordinates, or even work with 
coordinates in an intrinsically curved spacetime. 

                                                 
* Whether one should work with the proper time formula or the distance formula is a matter of 
disagreement between physicists, somewhat akin to the religious wars between Protestants and 
Catholics.  They claim to worship the same deity, but that doesn’t stop them from fighting.  My 
view is that working with the time formula is somewhat superior, but most general relativists use 
the alternative.  The convention used here is called the “mostly minus” convention, since most of 
the terms in the distance formula (the “metric”) have minus signs in them. 
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C. Other Coordinate Systems 
 
 We now want to consider changing coordinates.  You might think we should be 
switching to rotating coordinates, or accelerating coordinates, or something like that, but 
my goal can be achieved much more modestly: we will attempt to change to spherical 
coordinates.  Spherical coordinates are related to Cartesian coordinates by the 
relationships: 

sin cos ,                         sin sin ,                          cosx r y r z r        

We now simply want to rewrite the infinitesimal distance formula in terms of the new 
coordinates.  We will do so by simply calculating differentials like this: 
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Similarly, we can show 

     
   

sin sin cos sin sin cos ,

cos sin .

dy dr r d r d

dz dr r d

       

  

  

 
 

We then plug all three of these formulas into our distance formula, and after considerable 
work (see homework), we find that 

       2 2 2 22 2 2 2 2 2sinc d c dt dr r d r d        

This formula doesn’t really contain any information that wasn’t already in the original 
coordinate system, it just is rewriting the distance formula. 
 Now, recall the geodesic principle: objects without forces on them will always 
follow the path which maximizes the proper time.  This statement is true no matter what 
coordinates we use, because the proper time is independent of coordinates.  It is possible 
(though somewhat more difficult) to work directly in spherical coordinates.  I won’t go 
through the math, but one can find, for example, that the 
radius satisfies the equation 
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If you look at the left side, it looks as if there is some sort of 
acceleration going on, but in fact, all this equation is telling 
you is that if you are moving in the  or  direction, there 
will be changes in r that simply have to do with the curving 
of the coordinates, as I have attempted to illustrate at right.  
The red curve is straight, but it “accelerates” in the r 
direction.  This acceleration will, of course, be independent 
of mass, because it is not real, it is just compensating for the curved coordinates. 
 Of course, just because the equations seem to indicate that some coordinate is 
accelerating, doesn’t mean there is any real acceleration going on.  We could always go 
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back to ordinary Cartesian coordinates, and then it would be obvious that no acceleration 
occurs.  This is because the coordinates are curved, but the spacetime itself is not.  This 
leads us to a discussion of curvature of spacetime. 
 
 

D. Curvature 
 
 Consider an ancient explorer on the surface of the Earth.  As far as he is 
concerned, the Earth looks flat (ignoring mountains and so on), and he can’t 
travel in the vertical direction, so the Earth is effectively two 
dimensional.  Nonetheless, it is possible, without him leaving the 
Earth, to notice that the Earth is curved.  Consider, for example, two 
explorers that leave the North Pole simultaneously, traveling at the 
same speed, and walk in a “straight” line.  At first, these two 
explorers will be traveling apart, their separation gradually increasing, 
but soon they will find their rate of separation slowing, and by the time 
they reach the Equator, they will not be separating at all.  Indeed, as they 
continue southward, they will start moving closer together, and ultimately will meet at 
the South pole.  Their paths have apparently curved, but in fact, they both traveled in the 
straightest line they possibly can, it is space itself that has curved. 
 It is pretty easy to work out the distance formula on the surface of a sphere.  Since 
the radius R is fixed, a position on the sphere is described simply by the longitude and 
latitude, which we will describe by standard spherical coordinates  and .  Then one can 
show that the distance between nearby points on the sphere is given by 

   2 22 2 2 2sinds R d R d     

Furthermore, there is no way of changing these two coordinates to any other two 
coordinates in such a way as to “flatten out” the sphere – because it isn’t flat.  The 
surface of a sphere has curvature, and though it is not obvious, the curvature can be 
deduced directly from the metric, or formula for the distance. 
 Of course, you have doubtless seen flat maps of the Earth, or at least portions of 
the Earth.  These maps always involve a distortion of distances, so that the straightest 
lines possible – the geodesics – will appear curved on the maps.  If you look at the paths 
airplanes take for international travel – say, across the Atlantic – they will often appear 
curved.  Their curvature is not because the airlines like flying north, they are simply 
taking the shortest path between two points on the surface of a sphere, and that path 
appears curved when drawn on a flat map. 
 What has this to do with gravity?  Well, in the presence of matter, it turns out that 
spacetime itself gets curved.  The curvature can be deduced from the metric, or distance 
formula, though the equation is incredibly complicated.  The point is, given only the 
distance formula, it is possible (though not easy) to deduce the fact that spacetime is 
curved. 
 There are, in fact, many different measures of the curvature of a given spacetime.  
The most general one, called the Riemann tensor, is a complicated object with 256 
components (though some of them are zero)!  Einstein, in developing his general theory 
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of relativity, found that this one didn’t work.  Instead, he found he could work with a 
much simpler object, called the Einstein tensor, which is denoted by G . 

G is just the name of the tensor, and the little indices  and   specify the components of 
the tensor.  For example, if you are working in spherical coordinates, the indices take on 
the values t, r, , and , the four coordinates we are working with, so there is a ttG  

component, a rtG  component, a G  component, and so on, for a total of sixteen possible 

combinations. 
 The Einstein tensor is a measure of the curvature of spacetime.  If you work out 
the Einstein tensor for any flat spacetime, you will always get zero.  This is true whether 
you use Cartesian coordinates, or spherical coordinates, or rotating coordinates, or any 
coordinates you can think of.  You can’t hide curvature by changing coordinates; if space 
is curved, it will show up in the equations no matter what coordinates you use.  In fact, 
Einstein’s equations (see section F) work in any coordinate system.  But they are so 
messy that I won’t write them out; I’ll simply fool you into thinking they are simple by 
burying the complexity in symbols like G . 

  

E. The Stress-Energy Tensor 
 
 We have half of the material in place for writing Einstein’s equations, we now 
need to put in place the other half.  As was realized by Newton, mass causes gravity, and 
it makes sense that this would somehow be true in general relativity as well.  However, in 
relativity, we already know that mass and energy are related, so logically it should be 
energy, not mass, that causes gravity.  As we know, however, energy is just one 
component of a four-component four-dimensional momentum, so perhaps we should be 
including momentum as well. 
 In fact, it turns out that not only do the momentum and energy come into the 
equations, but also the way they are flowing or being transferred plays a role as well.  
The whole source is not just the energy, or even the energy and the momentum, but 
something nastier, denoted by the symbolT .   This object should properly called the 

stress-strain-energy-momentum tensor, but this intimidating phrase serves no purpose 
other than to impress your parents over Thanksgiving with the high falutin’ stuff you are 
learning in modern physics, and that their money is going to a good cause.  Because even 
physicists can’t get their mouths around this phrase, it is more commonly called the 
stress-energy tensor or energy-momentum tensor or even just the stress tensor (or 
sometimes, just T ).  I’ll call it the stress-energy tensor. 

 The stress-energy tensor again, contains many components, sixteen in all.  Just 
one of these components, the time-time component, is the actual energy density (which is 
proportional to the mass density), ttT U .  The space-time components are proportional 

to the momentum density, and the space-space components are related to mechanical 
concepts like stress and strain (which are sort of like pressure).  Don’t worry about it.  
Just remember that T  somehow is aware of all the matter, and what its gravitational 

influence is. 
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F. Einstein’s Equations 
 
 We now need to put 
these two ideas together.  If 
spacetime is curved, then 
geodesics (the longest proper 
time paths between two points) will be curved.  And I mean really curved, like the paths 
on the surface of the Earth, not just apparently curved, like we found in spherical 
coordinates.  When there is gravity present, the paths of objects will be curved as well.  
Einstein speculated that the matter caused the gravity.  In other words, the stress-energy 
tensor T  somehow causes the curving of spacetime G .  He speculated that the 

relationship was as follows: 
48 ,G Gc T    

where G is Newton’s constant, c is the speed of light, and we have already described G  

and T .  Of course, you can’t really understand this equation unless you know how to 

calculate G  (which you don’t) and you understand what T  is (which I have only 

vaguely described).  Suffice it to say that the left side describes the curvature of 
spacetime, the right side describes the presence and nature of the matter, and the equation 
relates them.  Enough said. 
 In addition, we will continue to assume that particles follow geodesics; that is, 
they will take the path which maximizes the proper time going from one place to another. 
To restate this geodesic principle, we have  

An object with no non-gravitational forces acting on it will always follow a 
geodesic, which is the longest proper time path between two points in spacetime. 

Got that?  I have added the words “non-gravitational” to make an important point: 
Particles in the presence of gravity still  follow geodesics.  Because of the curvature of 
spacetime, these geodesics are curved, just as the curvature of the Earth forces explorers 
to follow curved paths on the surface of the Earth.  In general relativity, objects do not 
curve because there are gravitational forces on them.  They curve because they are 
moving through curved spacetime. 
 Einstein’s equation, together with the geodesic principle, constitutes the essence 
of general relativity.  The former is difficult to solve; indeed, only a few exact solutions 
of Einstein’s equations are known.  But there is ample evidence for the correctness of 
these equations. 
 Probably the best way to end this short section is with a quote from John Wheeler, 
which summarizes these two principles: 

Matter tells space how to curve, and space tells matter how to move 

 
 
 
 

 Einstein tensor: G  measures curvature 

 Stress-Energy tensor: T  measures presence of matter 
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G. The Schwarzschild Solution 
 
 By far the most important exact solution to Einstein’s equation is the 
Schwarzschild solution.  This describes the metric (distance formula) around a 
spherically symmetrical source, such as a planet, star, neutron star, or black hole.  The 
formula for the metric, in spherical coordinates, is 

       
1

2 2 2 22 2 2 2 2 2
2 2

2 2
1 1 sin

GM GM
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c r c r
   


           
   

, 

Where c is the speed of light, M is the mass of the source, and G is Newton’s constant 
again.  If you compare this with the metric we found before, you will see that it is the 
same, other than the factors of 21 2GM c r  and its reciprocal in the time and radial parts. 
 What does this equation tell us?  Well, the change in the coefficient of dr is kind 
of interesting; it can be shown, for example, that a circle of radius R around the Earth will 
have a circumference that is not simply 2R.  Far more interesting, however, is the fact 
that there is a coefficient in front of the time factor.  For example, suppose someone stays 
at a constant position compared to the Earth (dr = d = d = 0), then this formula can be 
shown, without too much difficulty, to lead to the following remarkable equation: 

2

2
1

GM
t

c r
    

Since the factor in the square root is always less than one, this means that the time 
measured by someone near a mass is less than someone not near it, or 

Time slows down when you get near a massive object 

 The effect is pretty small, probably around 1 part in 109 near the surface of the 
Earth, for example.  You might think this is too small effect to be measured, and certainly 
too small to worry about, but in fact, Global Positioning System (GPS) satellites (which 
include atomic clocks) need to keep extremely accurate track of time, and such an effect, 
if unaccounted for, would quickly accumulate into large errors in the position measured 
by GPS equipment. This is not a problem, since GR was well understood by the time we 
had GPS satellites, so everything is fine. 
 The effect is much larger if you use a smaller and more massive object, such as a 
neutron star.  A typical neutron star weighs something like 1.4 times the mass of the Sun, 
and might typically have a radius as small as 15 km.  Because the mass is large and the 
radius is small, atoms on the surface will oscillate more slowly (as observed by us), and 
we will see radiative spectral lines that are red-shifted to longer wavelengths by an 
amount 

  1/ 22
0 1 2GM c r 


  , 

Where 0 is the natural wavelength of the light,  is the wavelength we observe, and r is 
the radius of the neutron star. 
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H. Gravitational Forces 
 
 I claimed previously that particles follow geodesics, and that can account for the 
fact that objects accelerate downwards when we release them.  Let me try to convince 
you of how this works. 
 Suppose I am standing still on the surface of the Earth, and am holding a ball.  I 
want to let go of the ball, and recapture it 0.5 second later at the exact place I released it.  
In other words, I am throwing the ball to myself.  How am I going to do this?  Well, the 
goal is to find a path through space time that starts and ends at the same place, but at a 
different time.  Let’s draw a spacetime diagram, and consider three possible paths from 
the initial point to the final point.  This will be a highly qualitative diagram, where time 
will be increasing to the right. 
 
 
 
 
 
 
 
 
 
 
 Remember that our goal is to maximize the proper time, as measured by the ball, 
as the ball moves from the throwing incident (on the left) to the catching incident (on the 
right).  Consider first the path A, in which the ball stays near me all the time; the ball is 
floating in space at a constant height for one second.  Because time slows down when the 
ball is near the Earth, this will have a relatively small proper time.  We can do better.  To 
increase the proper time, the ball needs to move away from the Earth, and get to a greater 
height above the Earth. 
 Consider the path C, which represents a path where the ball rushes upwards, so as 
to get away from the Earth.  This is good, because being farther from the Earth, there is 
more proper time involved, so more proper time passes for the ball.  However, this ball 
had to move fast to get so high, and according to relativity, when you move fast, time 
slows down.  So, even though path C is farther away from the gravitational source (good), 
it is moving faster (bad), and may have no more proper time than path A. 
 The ideal path is a compromise, path B.  In fact, one can show that in Earth’s 
gravitational field, the ideal path is one that accelerates downwards at about 9.8 m/s2.  
General relativity predicts gravitational forces on physical particles, just as does 
Newton’s theory. 
 Of course, the curvature of spacetime affects everything that moves through it, 
including light.  One of the first measurements of general relativity was the gravitational 
deflection of starlight by the Sun.  The exact magnitude is predicted by relativity.  Indeed, 
the deflection of light from distant sources is now one of the principal methods used to 
measure the masses of distant galaxies and galaxy clusters, by seeing how much the light 
is deflected by the intervening galaxy or cluster. 
 

A 

B C 
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I. Black Holes 
 
 Let’s look at the Schwarzschild metric again: 

       
1

2 2 2 22 2 2 2 2 2
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2 2
1 1 sin

GM GM
c d c dt dr r d r d

c r c r
   


           
   

 

Recall, this is the metric outside of any gravitational source.  If you look at the formula, 
something pretty interesting happens when Sr R , called the Schwarzschild radius, 

given by 

2

2
S

GM
R

c
  

For something with the mass of the Sun, this is about 3 km, and is well inside the Sun, so 
it is not a concern. 
 But suppose we took the entire mass of the Sun, and somehow compressed it into 
a space only about 3 km in radius.  What would happen?  If you look at the equation 
naively, time would stop and space would get infinitely stretched at the Schwarzschild 
radius.  Actually, it’s a bit more complicated than this, and you have to change 
coordinates to figure out what is really going on.  What happens is that all of the mass 
would (theoretically) get crushed down to an infinitely small point.  Furthermore, 
anything that gets sucked closer than the Schwarzschild radius would continue falling in 
towards the center of the black hole.  Nothing – not even light – can escape a black hole.  
This is the point of no return – if you reach the Schwarzschild radius, you are doomed to 
fall into the black hole. 
 Of course you can’t see a black hole, because any light you shine on it will only 
be soaked up.  But black holes have such enormous gravity that as gas falls into them, the 
gas is accelerated to relativistic velocities, and before it falls in, it will radiate superhot 
radiation (X-rays) that can give us clues about what the gravitational effect of the black 
hole is.  Such observations have convinced us that the universe is peppered with black 
holes ranging in mass from a few times the Sun’s mass up to many millions of times the 
Sun’s mass. 
 

J. Other Interesting Effects 
 
 Many other effects of Einstein’s equations have 
experimental consequences that either have been 
observed or will soon be searched for.  For example, 
although the acceleration of gravity predicted by 
Einstein is close to that predicted by Newton, when 
objects are moving at high velocity, they will not be 
exactly right.  Hence, for example, whereas Newton’s 
theory predict Kepler’s laws, including the claim that 
planetary orbits are ellipses, Einstein’s equations show 
that they won’t be quite perfect ellipses, as sketched at 
right.  Instead, as a planet (say Mercury) orbits the Sun, 
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the orbit will slowly but inexorably change the orientation of its principal axis.  This 
“precession of the perihelion,” in the case of Mercury, was actually observed but 
unexplained before Einstein developed his theory.  The precession is quite tiny, working 
out to 43 arc-seconds per century (an arc second is 1/3600 of a degree), but Einstein’s 
theory accounted for it; Newton’s did not. 
 Another interesting effect is called “frame dragging.”  Recall that the source of 
gravitational fields, according to Einstein, is not just the mass/energy density, but also 
includes the motion of that mass.  Consider the Earth, which is not just a sphere, but 
instead a rotating sphere, so that all that mass is moving (although not very fast, by 
relativistic standards).  This moving mass should produce an effect where spacetime is, in 
a sense, dragged around a little by the rotating Earth.   Gravity Probe B, a NASA 
experiment recently completed, looked for this effect for three years, ending in early 
2007.  Their final analysis looking for this effect should be available any day now. 
 Yet another effect is gravitational waves.  It is possible to produce distortions in 
spacetime that travel through space at the speed of light, much like light 
waves.  Such distortions would cause distances to stretch in one 
dimension, while shrinking in the perpendicular directions.  Cataclysmic 
effects throughout the universe, such as the collision of black holes or 
neutron stars, should create these ripples, which should produce small 
but potentially observable effects here on Earth.  In 2015, gravitational 
waves from the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected 
gravitational waves caused by the merger of two black holes of mass 35 M and 30 M .  

The result was published in 2016. As of late 2018, four or five other black hole mergers 
have produced measurable gravitational waves. In 2017 a merger of two neutron stars 
was found, and this was accompanied by light from across the electromagnetic spectrum 
in the same direction. 
 Even before gravitational waves had been directly observed, their indirect effect 
had been seen.  It turns out that accelerating masses, such as orbiting astronomical objects, 
should produce small but steady quantities of gravitational waves, which slowly drain 
energy from the system.  As a consequence, orbiting systems should slowly lose energy, 
and in general the objects will spiral towards each other.  In the solar system, this effect is 
too small to see, but pairs of closely orbiting neutron stars have been observed that are 
moving so quickly and feel so much gravity that this effect 
can easily be detected.  These systems also exhibit very fast 
precession of the perihelion of the orbit (similar to Mercury, 
but much larger), as well as other effects consistent with 
general relativity. 
 Indeed, we may well be entering the Golden Age of general relativity experiments.  
When I was studying “modern physics” in the 1970’s, the tests of GR were so few and 
the effects so small that there was still room to doubt the theory.  Now we have several 
accurate experiments, with prospects of many more coming in the next few years.  
General relativity is finally maturing, and entering the realm of precision experiments, 
where it can take its place with special relativity, quantum mechanics, and other well-
tested theories. 
 


