
Solutions to Problems 7c 
 
10. Consider again the Feynman amplitude for        e p q e p q     .  Show that if 

you replace the polarization of one of the photons (either one – your choice) with its 
corresponding momentum, the Feynman amplitude becomes exactly zero.  Do not treat 
the electron as massless. 

 
 A moment of thought is worth using before we plunge into the calculation.  We need to 
decide which photon we are going to make the substitution for.  We’ll pick the initial photon 
with momentum q.  For this reason, it is advisable to write the intermediate momenta in terms of 
q, since this will give the greatest chance for simplification. Furthermore, since we are trying to 
prove something, we write the propagators in the “proof” form.  Hence our Feynman amplitude 
will take the form 
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We now make the substitution q    and simplify this to  

 2 * 1 1
.i ie u qu u q u

p q m p q m
 

  
 

         
  

For the first term, we note that pu mu , so we can rewrite  qu q p m u   .  For the second 

term, we note that u p u m   , so we can rewrite  u q u q p m     .  Substituting these 

expressions in, we find 
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So we have proven it. 
 
 



12. If the photon were massive, there would be three polarizations of the photon, and the 
sum over polarizations rule would be changed to  
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 where M is the photon mass.  Calculate the decay rate e e   , assuming no other 
Feynman rules change.  Include the electron mass m. 

 
 There is only one Feynman diagram, sketched at right. 
According to our Feynman rules, the amplitude is 
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We average this over initial polarizations and sum over final spins, to give us 
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We now note that  2 2p p M  , and that since  ,0,0,0q M  and this energy is split evenly 

between the final state particles, we will have 21
2p q p q M    .  This allows us to simplify the 

final expression to 
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The decay rate is therefore 
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The final momentum is  2 21
2 M m p , so substituting this in, we have 
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13. The 0  is not a fundamental particle, but made of quark/anti-

quark pairs.  It decays by the process 0  .  The coupling 
responsible is non-renormalizable, and is given in Fig. 7-11, 
where g is the coupling.  Find the rate for this decay. 

 
 There is only one diagram, identical with Fig. 7-11, so we won’t 
redraw it.  The amplitude is 
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We square this and then sum over the final polarizations, which yields 
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where at the penultimate step we used the solution to problem 2.2c.  We then note that 
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We therefore have 
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2i g m  .  This allows us to proceed to the decay rate.  However, 

there is an extra factor of ½ because we have identical particles in the final state. 
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Figure 7-11:  The 
interaction 
responsible for 0  
decay. 
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