## Quantum Mechanics Graduate Exam

Each problem is worth 25 points. The points for individual parts are marked in square brackets. **To ensure full credit, show your work.** Do any four (4) of the following five (5) problems. If you attempt all 5 problems you must clearly state which 4 problems you want to have graded.

1. A particle of mass *m* has energy eigenvalue E = 0 in the 1D potential sketched below,



Find an expression for b in terms of a,  $V_0$  and m.

- 2. An electron is in a magnetic field pointing in the z-direction,  $\mathbf{B} = B\hat{\mathbf{z}}$ . The Hamiltonian is given by  $H = -\gamma \mathbf{B} \cdot \mathbf{S}$ . Several helpful formulas appear at the end of this problem.
  - (a) [2] What are the eigenvalues and eigenvectors for the energy?
  - (b) [6] If the system at t = 0 is in the state  $|\Psi(0)\rangle = \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$ , what is the state at time *t*,  $|\Psi(t)\rangle$ ?
  - (c) [6] Calculate the expectation value of the three spin operators  $\langle S_x \rangle$ ,  $\langle S_y \rangle$ , and  $\langle S_z \rangle$  at time *t*.
  - (d) [6] If the spin along the *x*-direction is measured at time *t* what is the probability that it will have the value  $+\frac{1}{2}\hbar$ ?
  - (e) [5] The measurement is performed, and the result does come out to be  $s_x = +\frac{1}{2}\hbar$ . What is the state vector at time t' after the measurement, up to an irrelevant phase?

**Helpful formulas**:  $S_i = \frac{1}{2}\hbar\sigma_i$ ,  $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ,  $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ ,  $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ .

- 3. A particle of mass *m* in the Harmonic oscillator with frequency  $\omega$  is in the state  $|\psi\rangle = \frac{1}{2}(|0\rangle + |1\rangle + \sqrt{2}|2\rangle).$ 
  - (a) [4] What is the expectation value of the Hamiltonian  $\langle H \rangle$ ?
  - (b) [16] What are the expectation values of  $\langle X \rangle$ ,  $\langle X^2 \rangle$ ,  $\langle P \rangle$ , and  $\langle P^2 \rangle$ ?
  - (c) [5] Find the uncertainties  $\Delta x$  and  $\Delta p$ , and check that it satisfies the uncertainty relation.

## Harmonic Oscillator Formulas

$$a|n\rangle = \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle, \quad X = \sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger}), \quad P = i\sqrt{\frac{\hbar m\omega}{2}}(a^{\dagger}-a).$$

- 4. A quantum mechanical system consists of three orthonormal basis vectors  $\{|a\rangle, |b\rangle, |c\rangle\}$ , and the operator *D* is defined by  $D|a\rangle = |b\rangle$ ,  $D|b\rangle = |c\rangle$ , and  $D|c\rangle = |a\rangle$ , so that *D* causes each state to "hop" to the next state. The Hamiltonian in this basis is given by  $H = -\hbar\omega(D^{\dagger}D + D + D^{\dagger})$ .
  - (a) [6] Write the matrix representation of D,  $D^{\dagger}$  and H in the  $\{|a\rangle, |b\rangle, |c\rangle\}$  basis.
  - (b) [2] Can the operator *D* correspond to a physical observable? Justify your answer (1 sentence).

 $b\rangle$ 

 $|c\rangle$ 

- (c) [6] Show that the states  $|\psi_1\rangle = \frac{1}{\sqrt{3}} (|a\rangle + |b\rangle + |c\rangle)$ ,  $|\psi_2\rangle = \frac{1}{\sqrt{2}} (|a\rangle |b\rangle)$ , and  $|\psi_3\rangle = \frac{1}{\sqrt{6}} (|a\rangle + |b\rangle 2|c\rangle)$  are eigenstates of the Hamiltonian, and find their eigenvalues.
- (d) [11] If the system starts in state  $|\Psi(0)\rangle = |c\rangle$  at time 0, what is the state at an arbitrary time  $|\Psi(t)\rangle$ ? If the state is measured at time *t*, what is the probability it will be in the state  $|c\rangle$ ?
- 5. Consider a quantum system with just *three* linearly independent states. The Hamiltonian, in matrix form, is

$$H = V_0 \begin{pmatrix} (1 - \varepsilon) & 0 & 0 \\ 0 & 1 & \varepsilon \\ 0 & \varepsilon & 2 \end{pmatrix}$$

Where  $V_0$  is constant and  $\varepsilon$  is some small parameter ( $\varepsilon \ll 1$ ).

- (a) [2] Write down the eigenvectors and eigenvalues of the *unperturbed* Hamiltonian  $H_0$  where  $\varepsilon = 0$ .
- (b) [5] Use first- and second-order *non*-degenerate perturbation theory to find the approximate eigenvalue for the state that comes from the non-degenerate eigenvector of  $H_0$ .
- (c) [7] Use *degenerate* perturbation theory to find the first-order correction to the two initially degenerate eigenvalues.
- (d) [11] Solve for the **exact** eigenvalues of *H*. Expand each of them as a power series in  $\varepsilon$  up to second order. Compare with the results of perturbation theory.