Quantum Mechanics
 Graduate Exam

Each problem is worth 25 points. The points for individual parts are marked in square brackets. To ensure full credit, show your work. Do any four (4) of the following five (5) problems. If you attempt all 5 problems you must clearly state which 4 problems you want to have graded.

1. A particle of mass m has energy eigenvalue $E=0$ in the 1D potential sketched below,

$$
V(x)=\left\{\begin{array}{cc}
-V_{0} & \text { if } 0<x<a \\
0 & \text { if } a<x<b \\
\infty & \text { otherwise }
\end{array}\right.
$$

Find an expression for b in terms of a, V_{0} and m.

2. An electron is in a magnetic field pointing in the z-direction, $\mathbf{B}=B \hat{\mathbf{z}}$. The Hamiltonian is given by $H=-\gamma \mathbf{B} \cdot \mathbf{S}$. Several helpful formulas appear at the end of this problem.
(a) [2] What are the eigenvalues and eigenvectors for the energy?
(b) [6] If the system at $t=0$ is in the state $|\Psi(0)\rangle=\binom{\cos \theta}{\sin \theta}$, what is the state at time t,
$|\Psi(t)\rangle ?$
(c) [6] Calculate the expectation value of the three spin operators $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle$, and $\left\langle S_{z}\right\rangle$ at time t.
(d) [6] If the spin along the x-direction is measured at time t what is the probability that it will have the value $+\frac{1}{2} \hbar$?
(e) [5] The measurement is performed, and the result does come out to be $s_{x}=+\frac{1}{2} \hbar$. What is the state vector at time t^{\prime} after the measurement, up to an irrelevant phase?
Helpful formulas: $S_{i}=\frac{1}{2} \hbar \sigma_{i}, \quad \sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
3. A particle of mass m in the Harmonic oscillator with frequency ω is in the state $|\psi\rangle=\frac{1}{2}(|0\rangle+|1\rangle+\sqrt{2}|2\rangle)$.
(a) [4] What is the expectation value of the Hamiltonian $\langle H\rangle$?
(b) [16] What are the expectation values of $\langle X\rangle,\left\langle X^{2}\right\rangle,\langle P\rangle$, and $\left\langle P^{2}\right\rangle$?
(c) [5] Find the uncertainties Δx and Δp, and check that it satisfies the uncertainty relation.

Harmonic Oscillator Formulas

$$
a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad X=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right), \quad P=i \sqrt{\frac{\hbar m \omega}{2}}\left(a^{\dagger}-a\right) .
$$

4. A quantum mechanical system consists of three orthonormal basis vectors $\{|a\rangle,|b\rangle,|c\rangle\}$, and the operator D is defined by $D|a\rangle=|b\rangle$, $D|b\rangle=|c\rangle$, and $D|c\rangle=|a\rangle$, so that D causes each state to "hop" to the next state. The Hamiltonian in this basis is given by $H=-\hbar \omega\left(D^{\dagger} D+D+D^{\dagger}\right)$.
(a) [6] Write the matrix representation of D, D^{\dagger} and H in the $\{|a\rangle,|b\rangle,|c\rangle\}$ basis.
(b) [2] Can the operator D correspond to a physical observable? Justify your answer (1 sentence).
(c) [6] Show that the states $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{3}}(|a\rangle+|b\rangle+|c\rangle),\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|a\rangle-|b\rangle)$, and $\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{6}}(|a\rangle+|b\rangle-2|c\rangle)$ are eigenstates of the Hamiltonian, and find their eigenvalues.
(d) [11] If the system starts in state $|\Psi(0)\rangle=|c\rangle$ at time 0 , what is the state at an arbitrary time $|\Psi(t)\rangle$? If the state is measured at time t, what is the probability it will be in the state $|c\rangle$?
5. Consider a quantum system with just three linearly independent states. The Hamiltonian, in matrix form, is

$$
H=V_{0}\left(\begin{array}{ccc}
(1-\varepsilon) & 0 & 0 \\
0 & 1 & \varepsilon \\
0 & \varepsilon & 2
\end{array}\right)
$$

Where V_{0} is constant and ε is some small parameter $(\varepsilon \ll 1)$.
(a) [2] Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian H_{0} where $\varepsilon=0$.
(b) [5] Use first- and second-order non-degenerate perturbation theory to find the approximate eigenvalue for the state that comes from the non-degenerate eigenvector of H_{0}.
(c) [7] Use degenerate perturbation theory to find the first-order correction to the two initially degenerate eigenvalues.
(d) [11] Solve for the exact eigenvalues of H. Expand each of them as a power series in ε up to second order. Compare with the results of perturbation theory.

