Quantum Mechanics Graduate Exam

Each problem is worth 25 points. The points for individual parts are marked in square brackets. **To ensure full credit, show your work.** Do any four (4) of the following five (5) problems. If you attempt all 5 problems, you must clearly state which 4 problems you want to have graded. Some possibly helpful formulas are given at the end of the exam.

1. Consider a particle of mass m in a two-dimensional infinite square well with allowed region 0 < x < a and 0 < y < a. In addition, there is a small perturbation with potential

$$W(x,y) = \begin{cases} w_0 & \text{if } 0 < x < \frac{1}{2}a, 0 < y < \frac{1}{2}a, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) [5] What are the unperturbed energy eigenvalues and corresponding wave functions?
- (b) [8] Calculate, to first order in w_0 , the perturbed energy of the ground state.
- (c) [12] Same question for the first excited state(s). Give the corresponding wave function(s) to zeroth order in w_0 .
- 2. A particle of mass m lies in an infinite square well with allowed region 0 < x < a. At t = 0, the wave function is given by

$$\Psi(x,t=0) = \begin{cases} \sqrt{2/a} & \text{for } 0 < x < \frac{1}{2}a, \\ 0 & \text{for } \frac{1}{2}a < x < a. \end{cases}$$

- (a) [3] Will the particle remain localized in the left half of the well at later times?
- (b) [7] The energy of the particle is measured. What is the probability that the result is the ground state energy E_1 ? What is the probability that the result is the first excited state energy E_2 ?
- (c) [7] Calculate the probability that the energy yields the *n*'th state E_n .
- (d) [8] Show that the sum of the probabilities you found in part (c) is 1. The formula below may be useful.

$$\sum_{\substack{n=1\\\text{odd}}}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}$$

3. An electron of mass m is bound to a proton at the origin due to a potential V(r) = -B/r. Estimate the ground-state energy of this potential using the variational principle with trial wave function $\psi(r) = \begin{cases} a-r & \text{if } r < a, \\ 0 & \text{if } r > a. \end{cases}$ and compare to the exact energy $E_g = -\frac{mB^2}{2\hbar^2}$.

- 4. A single particle of mass m is in the 2D anisotropic harmonic oscillator with potential $V(x, y) = \frac{1}{2}m\omega^2x^2 + \frac{1}{2}m(2\omega)^2y^2$.
 - (a) [5] What are the energies of the states $|n_x, n_y\rangle$?
 - (b) [8] At t = 0, the system is in the state $|\Psi(t=0)\rangle = \frac{1}{\sqrt{3}}(|1,0\rangle + \sqrt{2}|0,1\rangle)$. What is $|\Psi(t)\rangle$?
 - (c) [12] What is the expectation value of $\langle XY \rangle$ for the state $|\Psi(t)\rangle$ from part (b) at all times t?
- 5. A particle of mass m in the one-dimensional potential $V(x) = -B\delta(x)$ has only one bound state, with normalized wave function $\psi(x) = \sqrt{\lambda}e^{-\lambda|x|}$, with $\lambda\hbar^2 = Bm$. A particle is initially in this state at t = 0, but then the potential is shifted to a new position, so now $V(x) = -B\delta(x-a)$. What is the probability it remains bound if the shift is
 - (a) [8] gradual, or
 - (b) [17] sudden.

1D Harmonic Oscillator potential
$$\frac{1}{2}m\omega^2x^2$$

$$X = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right), \quad a \mid n \rangle = \sqrt{n} \mid n - 1 \rangle, \quad a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n+1 \rangle.$$

Operators in Spherical Coordinates

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \psi) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$

 $\nabla \psi = \hat{\mathbf{r}} \frac{\partial \psi}{\partial r} + \frac{1}{r} \hat{\mathbf{\theta}} \frac{\partial \psi}{\partial \theta} + \frac{1}{r \sin \theta} \hat{\phi} \frac{\partial \psi}{\partial \phi}$

Possibly Helpful Integrals: In all formulas below, *n* and *p* are assumed to be positive integers.

$$\int \sin(\alpha x) dx = -\alpha^{-1} \cos(\alpha x), \quad \int \cos(\alpha x) dx = \alpha^{-1} \sin(\alpha x), \quad \int e^{\alpha x} dx = \alpha^{-1} e^{\alpha x}.$$

$$\int_{0}^{\infty} x^{n} e^{-Ax^{2}} dx = \frac{1}{2} A^{-(n+1)/2} \Gamma\left(\frac{n+1}{2}\right), \quad \int_{0}^{\infty} x^{n} e^{-Ax} dx = A^{-(n+1)} \Gamma\left(n+1\right),$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma(1) = 1, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2} \sqrt{\pi}, \quad \Gamma(2) = 1, \quad \Gamma\left(\frac{5}{2}\right) = \frac{3}{4} \sqrt{\pi}, \quad \Gamma(3) = 2.$$

$$\int_{0}^{a} \sin\left(\frac{\pi nx}{a}\right) \sin\left(\frac{\pi px}{a}\right) dx = \int_{0}^{a} \cos\left(\frac{\pi nx}{a}\right) \cos\left(\frac{\pi px}{a}\right) dx = \frac{a}{2} \delta_{np},$$

$$\int_{0}^{a} \sin\left(\frac{\pi nx}{a}\right) \cos\left(\frac{\pi px}{a}\right) dx = \frac{an}{\pi(n^{2} - p^{2})} \left[1 - (-1)^{n+p}\right].$$

$$\int_{0}^{a/2} \sin^{2}\left(\frac{\pi nx}{a}\right) dx = \int_{0}^{a/2} \cos^{2}\left(\frac{\pi nx}{a}\right) dx = \frac{a}{4}, \quad \int_{0}^{a/2} \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{2\pi x}{a}\right) dx = \frac{2a}{3\pi}.$$