Quantum Mechanics
 Graduate Exam

Each problem is worth 25 points. The points for individual parts are marked in square brackets. To ensure full credit, show your work. Do any four (4) of the following five (5) problems. If you attempt all 5 problems, you must clearly state which 4 problems you want to have graded. Some possibly helpful formulas are given at the end of the exam.

1. Consider a particle of mass m in a two-dimensional infinite square well with allowed region $0<x<a$ and $0<y<a$. In addition, there is a small perturbation with potential

$$
W(x, y)=\left\{\begin{array}{cc}
w_{0} & \text { if } 0<x<\frac{1}{2} a, 0<y<\frac{1}{2} a, \\
0 & \text { otherwise } .
\end{array}\right.
$$

(a) [5] What are the unperturbed energy eigenvalues and corresponding wave functions?
(b) [8] Calculate, to first order in w_{0}, the perturbed energy of the ground state.
(c) [12] Same question for the first excited state(s). Give the corresponding wave function(s) to zeroth order in w_{0}.
2. A particle of mass m lies in an infinite square well with allowed region $0<x<a$. At $t=0$, the wave function is given by

$$
\Psi(x, t=0)=\left\{\begin{array}{cc}
\sqrt{2 / a} & \text { for } 0<x<\frac{1}{2} a \\
0 & \text { for } \frac{1}{2} a<x<a
\end{array}\right.
$$

(a) [3] Will the particle remain localized in the left half of the well at later times?
(b) [7] The energy of the particle is measured. What is the probability that the result is the ground state energy E_{1} ? What is the probability that the result is the first excited state energy E_{2} ?
(c) [7] Calculate the probability that the energy yields the n 'th state E_{n}.
(d) [8] Show that the sum of the probabilities you found in part (c) is 1. The formula below may be useful.

$$
\sum_{\substack{n=1 \\ \text { odd }}}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}
$$

3. An electron of mass m is bound to a proton at the origin due to a potential $V(r)=-B / r$. Estimate the ground-state energy of this potential using the variational principle with trial wave function $\psi(r)=\left\{\begin{array}{cl}a-r & \text { if } r<a, \\ 0 & \text { if } r>a .\end{array}\right.$ and compare to the exact energy $E_{g}=-\frac{m B^{2}}{2 \hbar^{2}}$.
4. A single particle of mass m is in the 2 D anisotropic harmonic oscillator with potential $V(x, y)=\frac{1}{2} m \omega^{2} x^{2}+\frac{1}{2} m(2 \omega)^{2} y^{2}$.
(a) [5] What are the energies of the states $\left|n_{x}, n_{y}\right\rangle$?
(b) [8] At $t=0$, the system is in the state $|\Psi(t=0)\rangle=\frac{1}{\sqrt{3}}(|1,0\rangle+\sqrt{2}|0,1\rangle)$. What is $|\Psi(t)\rangle$?
(c) [12] What is the expectation value of $\langle X Y\rangle$ for the state $|\Psi(t)\rangle$ from part (b) at all times t ?
5. A particle of mass m in the one-dimensional potential $V(x)=-B \delta(x)$ has only one bound state, with normalized wave function $\psi(x)=\sqrt{\lambda} e^{-\lambda|x|}$, with $\lambda \hbar^{2}=B m$. A particle is initially in this state at $t=0$, but then the potential is shifted to a new position, so now $V(x)=-B \delta(x-a)$. What is the probability it remains bound if the shift is
(a) [8] gradual, or
(b) [17] sudden.

1D Harmonic Oscillator
potential $\frac{1}{2} m \omega^{2} x^{2}$

$$
X=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right), \quad a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
$$

Operators in Spherical Coordinates

$$
\nabla \psi=\hat{\mathbf{r}} \frac{\partial \psi}{\partial r}+\frac{1}{r} \hat{\boldsymbol{\theta}} \frac{\partial \psi}{\partial \theta}+\frac{1}{r \sin \theta} \hat{\phi} \frac{\partial \psi}{\partial \phi}
$$

$$
\nabla^{2} \psi=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}
$$

Possibly Helpful Integrals: In all formulas below, n and p are assumed to be positive integers.

$$
\begin{gathered}
\int \sin (\alpha x) d x=-\alpha^{-1} \cos (\alpha x), \quad \int \cos (\alpha x) d x=\alpha^{-1} \sin (\alpha x), \quad \int e^{\alpha x} d x=\alpha^{-1} e^{\alpha x} . \\
\int_{0}^{\infty} x^{n} e^{-A x^{2}} d x=\frac{1}{2} A^{-(n+1) / 2} \Gamma\left(\frac{n+1}{2}\right), \quad \int_{0}^{\infty} x^{n} e^{-A x} d x=A^{-(n+1)} \Gamma(n+1), \\
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma(1)=1, \quad \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{\pi}, \quad \Gamma(2)=1, \quad \Gamma\left(\frac{5}{2}\right)=\frac{3}{4} \sqrt{\pi}, \quad \Gamma(3)=2 . \\
\int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi p x}{a}\right) d x=\int_{0}^{a} \cos \left(\frac{\pi n x}{a}\right) \cos \left(\frac{\pi p x}{a}\right) d x=\frac{a}{2} \delta_{n p}, \\
\int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) \cos \left(\frac{\pi p x}{a}\right) d x=\frac{a n}{\pi\left(n^{2}-p^{2}\right)}\left[1-(-1)^{n+p}\right] . \\
\int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi n x}{a}\right) d x=\int_{0}^{a / 2} \cos ^{2}\left(\frac{\pi n x}{a}\right) d x=\frac{a}{4}, \quad \int_{0}^{a / 2} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) d x=\frac{2 a}{3 \pi} .
\end{gathered}
$$

