Physics 742 — Graduate Quantum Mechanics 2
Solutions to Chapter 12

[15] Joe isn’t getting any smarter. He is attempting to find the ground state energy of
an infinite square well with allowed region —a < x < a using the trial wave function (in

the allowed region) y (x)=1-x"/a’+ B (1 ~x*/a* ) , where B is a variational parameter.

Estimate the ground state energy and compare to the exact value.

Since there is no potential, we need to calculate only the normalization and kinetic terms,

which are
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The expectation value of the energy, as a function of B, is therefore
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To minimize this, we set the derivative equal to zero, which yields
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We now substitute each of these into the expression for E(B ) , to yield
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We are trying to minimize the energy, which clearly corresponds to the first case, not the second
(which is a maximum).



Since the well has width 2a, the exact energy is
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or a difference of about 15 parts per million. Not bad, for a simple polynomial estimate!

4. [10] A particle lies in one dimension with Hamiltonian /7 = P’ / 2m+ F |X | . Using the

WKB method, our goal is to find the eigenenergies of this Hamiltonian.
(a) [2] For energy E, find the classical turning points a and b.

We first find the classical turning points, which are solutions to £ = F |x| . The solutions
are |x|=E/F, x=+E/F,s0 a=—E/F and b=E/F .

(b)[4] Perform the integral required by the WKB method.

The WKB formula for the energy is

7rh n+ I\/2m[E V ]dx J.E/ \[2m E F|x
—2! \/ﬁ - Zm(E Fx)]

(7 2(2mE)”

0 3mF

(c) [4] Solve the resulting equation for E,

Solving for E, we have
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5. [10] We never completed a discussion of how to normalize the WKB wave function,

given by eq. (12.29b).
(a) [3] Treating the average value of sin” — 1, and including only the wave function in

the classically allowed region a < x <b, write an integral equation for /V.

In general, we must demand that the integral of the wave function squared equal one.
This wave function is only appropriate in the classically allowed region, so
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(b) [2] We are now going to find a simple formula for NV in terms of the classical period
T, the time it takes for the particle to get from point a to b and back again. As a first

step, find an expression for the velocity v(x) =dx/dt as a function of position. This

is purely a classical problem!

We use the classical formula for the total energy, which is kinetic energy plus potential
energy, E =1mv’ +V (x). Solving for the speed v, we have

2[E—V(x)].
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(¢) [3] Use the equation in part (b) to get an integral expression for the time it takes to
go from a to b. Double it to get an expression for 7.

The time for the period is
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(d) [2] Relate your answers in parts (a) and (c) to get a NON-integral relationship
between the normalization /V and the classical period 7.

It is obvious that the integrals in the two parts are very similar. Solving for the integral in
(c), we see that
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