Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 12

6. [20] A particle of mass m lies in one dimension with Hamiltonian near the origin of
H=P’[2m+ime’ X’ +y X’ where yis very small.
(a) [8] Find the energy of all quantum states to second order in %

If we treat yas zero, then we have a harmonic oscillator, which has eigenstates |n> and

energies ha)(n +%) . Letting our perturbation act on an arbitrary state, we have
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The energies of our states, therefore, are
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(b) [5] Find the eigenstates of H to first order in %

The states are given, to first order in ¥, by
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(¢) [7] Find the expectation value (y,| X |y,) for the eigenstates |y, ) to first order in x

We simply take
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7. [15] A particle of mass m lies in a one-dimensional infinite slightly tilted square well

bx ifO0O<x<a
V(x)= .

oo  otherwise
where b is small.

(a) [2] What are the normalized eigenstates and energies if b = 0?
For b =0, we just have an infinite square well, with wave functions and energies
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(b) [6] Find the eigenstates and energies to first order in b.

The energies are given, to first order in b, by
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To find the wave functions, we need to find
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We are avoiding the letter m so as not to confuse it with the mass. The expression in []’s
vanishes when 7 + p is even, and is —2 when n + p is odd. So we have
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(¢) [7] Find the ground state energy to second order in b. If you can’t do the sums
exactly, do them numerically.

Using our formula, we have
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The final sum can be performed numerically very quickly, since the terms fall as p®, or we can
do it analytically by hand or with the help of Maple.

> sum(4*n*2/ (4*n*2-1)*5,n=1. .infinity) ;
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