Physics 742 — Graduate Quantum Mechanics 1
Solutions to Chapter 13

6. [25] In section E we worked out an estimate of the energy between a pair of neutral
hydrogen atoms. Consider now the case of a naked proton and a single electron bound

to a second proton, as illustrated below.
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(a) [2] Write the Hamiltonian describing the interaction between these three particles.
The protons will both be treated as fixed.

There are three interactions, plus the kinetic energy of the electron, so
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(b) [2] Divide the Hamiltonian into Ho and a perturbation W, where the perturbation
terms are small in the limit of large a. How do you describe the quantum states and

their energies in the limit of infinite a?

The first two terms are Ho, and the perturbation W is the last two terms.
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The unperturbed states are |n/m), which have energy &, =—k,e’/2n’a, .
(c) [4] Let a=az. Expand W to only linear order in the displacement R.

This is straightforward. As in class, we write
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Substituting this into W, we find W =ak,e’Z .

(d) [5] Find the leading non-vanishing perturbative correction to the ground state
energy E,. The term should have a sum over, say, n, /, and m. What values of / and

m contribute?

The linear term in perturbation theory is (100|/¥ [100) = ke’a* (100 Z[100) =0, so we

must go to second order in perturbation theory, for which we have
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Despite the triple sum, it really isn’t as complicated as it seems. In particular, since R connects
only states with adjacent values of /, we must have / = 1. Furthermore, Z commutes with L., so
we must have m = 0. So the expression really is
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This sum is more complicated than it seems, because in addition to the bound states, we have to
include the free states, which we never tried to find the form of.

(e) [7] Find an upper bound on the energy of the ground state at long range by
including only the leading term in the sum.

Every term in the sum is negative, so if we include only one term, we end up with an
overestimate of the ground state energy. We’ll only include n = 2, which will yield
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The final matrix element can be found, for example, in the equation between (13.16) and (13.17),
or we can work it out with Maple.

(f) [5] Find a lower bound on the energy of the ground state at long range by including
all the terms in the sum, but underestimating the energy denominators.

The smallest denominator occurs when n = 2, and hence if we assume ¢, —¢, =&, —¢, we

will overestimate the amount the energy is decreased by the perturbation, and hence
underestimate the energy. Hence we can state with confidence
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The only term missing in the sum is the unperturbed ground state itself, which doesn’t contribute
to the sum, so we effectively have a sum over complete states, and we therefore have
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The final matrix element can be found in the equation between (13.20) and (13.21). Comparing
the two formulas, we conclude that
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Unlike the van der Waals interaction, the potential falls as only the fourth power of distance. 1
have no idea what the correct value of this parameter is, but I’d guess it’s a bit more than 2.



