Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 14

4. [10] In class we found the scattering cross section for Coulomb scattering by a charge ¢’
from a point charge ¢ located at the origin, with potential V(r) =k,qq'[r. We needed

the Fourier transform, which turned out to be Ia’ v (r)e ™ =4xk,qq' [K’ .

(a) [3] Place the source ¢ not at the origin, but at r =a. What is the potential now?
What is the Fourier transform now? Hint: Don’t actually do the work, just shift
your integration variable, and use previous work. Convince yourself (and me) that

the differential cross-section is unchanged.

We need to replace » in the denominator of the potential with |r - a| . We then simply

shift our integration variable to r > r+a. We find
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The only change is a phase, but since you end up squaring the amplitude, it doesn’t change
things at all.

(b) [4] Suppose we replaced ¢ with a series of charges ¢; located at several locations a
What would be the Fourier transform now? What if, instead of a series of discrete
charges ¢i, we had a charge distribution p(r) spread around in space?

The potential from a series of charges is obviously
Z kg4
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The Fourier transform of this, as a consequence, is clearly just the sum from each of the separate

charges
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For a charge distribution, the obvious generalization is

Icz’31'V(l’)e""K'r =_471réc§q Id3rp(r)e_iK" :



(¢) [3] Show that the differential cross-section for a charge ¢’ scattering off of a charge
distribution p(r) is given by

do  4u’klq”
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where K =k’ -k, the change in the wave number.

We simply substitute our previous result into the formula for the cross-section, which
yields

do |47zk q j o KT ?
aQ 47z h4 K*

5. [15] An electron of mass m scatters from a neutral hydrogen atom in the ground state
located at the origin.
(a) [7] What is the charge distribution for a neutral hydrogen atom? Don’t forget the
nucleus! What is the Fourier transform of the charge?

The nucleus has charge e and is locate at the origin, so we can model it with a charge
distribution p(r)=e5"(r). The electron is spread out in a wave function given by

p(r)= —e|w (r)|2 . Using the explicit form of the wave function for the ground state, we
therefore have

p(r)=es’ (r)—i}e_zr/“‘] .

a,

We will have to keep our e’s straight. When computing the Fourier transform, the charge
distribution is spherically symmetric, so there’s no harm in assuming K is in the z-direction. The
Fourier transform of this is
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Obviously, this vanishes if K = 0.



(b) [8] Find the differential and total cross section in this case.
We simply use the formula from problem 4. We find

do 4m’klq"”
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where we have used the identity K* =2k”(1-cosé) to simplify our expression, as well
asa, =h’ / mk,e’ . We now have a single nasty integral to do, which is why God invented Maple.

> assume (A>0) ;integrate ( (4+A-A*x)*2/ (2+A-A*x) "4 ,x=-1..1);
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Note that the final factor goes to one |
in the low energy limit, so we have a 0
finite cross section 47a, , which then
decreases as we increase our energy. 0 - . . - .
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