
Physics 742 – Graduate Quantum Mechanics 2 
Solutions to Chapter 18 

 
1. [10] An electron is trapped in a 3D harmonic oscillator potential, 2 2 21

022H m mω= +P R . 

It is in the quantum state , , 2,1,0x y zn n n = . 

(a) [5] Calculate every non-vanishing matrix element of the form , , 2,1,0x y zn n n′ ′ ′ R , 
where the final state is lower in energy than the initial state. 

 
 The three coordinate operators can be written in the form  ( )†

02i i iR m a aω= + , so 
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 We are interested in decay, which implies we want a lower energy state, so there are only 
two possible final states that work 
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(b) [5] Calculate the decay rate ( )210 , ,x y zn n n′ ′ ′Γ →  for this decay in the dipole 

approximation for every possible final state, and find the corresponding branching 
ratios. 

 
 The decay rate is given by ( ) 23 24

3 IF FII F cαωΓ → = r .  In each case, the frequency 
difference is simply 0ω , so we have 
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2. [15] A hydrogen atom is initially in a 3d state, specifically, , , 3, 2, 2n l m = + . 



(a) [9] Find all non-zero matrix elements of the form , , 3, 2, 2n l m′ ′ ′ +R , where n n′ < .  
Which state(s) will it decay into? 

 
 The position operator is a rank one tensor, so by the Wigner-Eckart theorem, the final 
value of l' must be in the range  1, , 1l l l l′ = + − , or l' = 3, 2, or 1.  But since n' < 3, and l' < n', the 
only possibility is l' = 1, which in turn implies n' = 2.  Furthermore, if we look at the matrix 
elements of the various components of R, which in spherical tensor notation would be ( )1

qR , then 
( )12,1, 3, 2, 2qm R′ +  is only non-vanishing for 2m q′ + = , which has the unique solution 

1m q′ = = .  So it must decay only to the state 2,1, 1+ . 

 We now need the non-zero matrix elements 2,1,1 3,2, 2+R , which we work out 
directly: 
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I used my hydrogen Maple routine to do the r and θ integral; the φ integrals are π, iπ, and 0 
respectively. 
 
> simplify(int(radial(3,2)*radial(2,1)*r^3,r=0..infinity)  
  *int(sin(theta)^5,theta=0..Pi)*3*sqrt(5)/16); 
 

(b) [6] Calculate the decay rate in s-1. 
 
 We start with our standard expression, namely 
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The frequency is given by the difference in energy between the two states, namely 
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The Bohr radius is 0a mcα=  .  Substituting these expressions into the rate equation, we have 
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