
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Chapter 1 

 
5. [10] For each of the wave functions in question 4, find x , x∆ , p , p∆ , and check that 

the uncertainty relationship ( )( ) 1
2x p∆ ∆ ≥   is satisfied. 

(a) [5] ( ) ( ) ( )1/4 21
2expx A iKx Axψ π= − . 

(b) [5] ( ) ( )expx xψ α α= − . 
 
 We simply work out each case in a straightforward manner.  For part (a), we have 
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In summary, 1 2x A∆ = , 2p A∆ =  , and ( )( ) 1
2x p∆ ∆ =  , so the inequality is just barely 

satisfied.  For part (b), we have 
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In summary, 1 2x α∆ =  , p α∆ =  , and ( )( ) 2x p∆ ∆ =  , which also works. 



6. [10] A particle of mass m lies in the harmonic oscillator potential, given by 
( ) 2 21

2V x m xω= . Later we will solve this problem exactly, but for now, we only want an 
approximate solution. 
(a) [4] Let the uncertainty in the position be x a∆ = .  What is the corresponding 

minimum uncertainty in the momentum p∆ ?  Write an expression for the total 
energy (kinetic plus potential) as a function of a. 

 
 By the uncertainty principle, ( )( ) 1

2x p∆ ∆ ≥  , so if x a∆ = , then 2p a∆ ≥  .  The formula 
for the energy is 
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Now, the minimum energy classically would occur when p = 0 and x = 0, but this is impossible 
quantum mechanically because we cannot know them exactly.  Assuming x and p actually take 
on values approximately equal to their uncertainties, the corresponding energy would be 
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(b) [6] Find the minimum of the energy function you found in (a), and thereby estimate 

the minimum energy (called zero point energy) for a particle in a harmonic 
oscillator.  Your answer should be very simple. 

 
 To find the minimum energy, we simply take the derivative of the function we just found 
and set it to zero 
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You now simply plug this back into the energy formula to find 
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This answer is, in fact, exactly correct, and the derivation can be shown to be exact as well, but 
this is a coincidence special to the harmonic oscillator. 


