Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 1

5. [10] For each of the wave functions in question 4, find X, Ax, p, Ap, and check that
the uncertainty relationship (Ax)(Ap) > 17 is satisfied.

@) [5] w(x)=(4/x)" exp(iKx—1 Ax*).

() [5] v (x) = o exp(-alx]).

We simply work out each case in a straightforward manner. For part (a), we have
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In summary, Ax 1/ N2A4, Ap=hiA/ and ) 11, so the inequality is just barely
satisfied. For part (b), we have
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In summary, Ax = l/a\/i , Ap=ha, and (Ax)(Ap) = h/\/z , which also works.



6. [10] A particle of mass m lies in the harmonic oscillator potential, given by
V(x)=%me’x*. Later we will solve this problem exactly, but for now, we only want an
approximate solution.

(a) [4] Let the uncertainty in the position be Ax =a. What is the corresponding
minimum uncertainty in the momentum Ap? Write an expression for the total

energy (kinetic plus potential) as a function of a.

By the uncertainty principle, (Ax)(Ap) =17, so if Ax=a, then Ap >#/2a. The formula
for the energy is
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Now, the minimum energy classically would occur when p = 0 and x = 0, but this is impossible
quantum mechanically because we cannot know them exactly. Assuming x and p actually take
on values approximately equal to their uncertainties, the corresponding energy would be
2
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(b) [6] Find the minimum of the energy function you found in (a), and thereby estimate
the minimum energy (called zero point energy) for a particle in a harmonic
oscillator. Your answer should be very simple.

To find the minimum energy, we simply take the derivative of the function we just found
and set it to zero
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You now simply plug this back into the energy formula to find
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This answer is, in fact, exactly correct, and the derivation can be shown to be exact as well, but
this is a coincidence special to the harmonic oscillator.
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