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Solutions to Chapter 6 
 
6.1 [10] For the finite square well in section C, we showed that (6.24) is satisfied for the 

even wave functions.  Repeat this derivation for the odd wave functions; i.e., derive 
(6.25). 

 
 We know from class notes that in the three regions, the solution takes the form 
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We are interested in the odd parity bound states.  Since parity relates regions I and III to each 
other, and region II to itself, this implies    I IIIx x     and    II IIx x    .  We 

therefore have A D  and B = 0. 
 We now wish to match boundary conditions.  We will choose to do so at x = a, where we 
follow the notes to yield 
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Dividing the second equation by the first, we find 

 cotk ka    

Using equations (6.22) and (6.23), it is easy to see that 
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Plugging this in and dividing by k , we find 
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This is equation (6.25).  Solutions of this equation can then be substituted into (6.23) to get the 
energy eigenvalues. 
 
 


