
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Chapter 8 

 
3. [10] Suppose we have a particle with spin ½.  Let’s define the spin operator Sθ  as  

 ( )1
2 cos sin .z xSθ θσ θσ= +  

 In other words, we are measuring the spin of the particle along an axis that is at an 
angle θ compared to the z-axis 
(a) [5] Verify that  
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 are normalized eigenvectors of Sθ , and determine the eigenvalues.  In other words, 
you have to demonstrate 3 things, (i) they are normalized, (ii) they are eigenvectors, 
(iii) determine their eigenvalues. 

 
 To check that they are normalized, we see that 
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To check that they are eigenstates, we see that 
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The eigenvalues are obviously 1
2±  . 

 



(b) [3] Suppose a particle is initially in the state z+ .  If a subsequent measurement at 
angle θ  is done, what is the probability the result will come out positive?  What is 
the state immediately after the measurement is done? 

 
 According to our rules for probability, we square the overlap of our quantum state with 
the eigenstate with a positive eigenvalue, which gives us 

 ( ) ( ) ( ) ( )22 2 21 1 1 1
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The quantum state afterwards is then given by 
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In this case, we didn’t actually need to do the computation, since there is only one state with this 
eigenvalue. 

 
(c) [2] After the measurement at angle θ  yields a positive result, another measurement 

is done, this time at angle θ ′  is performed.  What is the probability this time that the 
result comes out positive? 

 
 The result is simply 
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4. [10] It is common to have to calculate matrix elements of the form 

 , , , , , ,l s l sn l m m n l m m′ ′ ′ ′ ⋅L S , 

 where L and S are the orbital and spin angular momenta respectively, and l, ml, and ms 
are quantum numbers corresponding to the operators L2, Lz, and Sz, respectively (n 
represents some sort of radial quantum number). 
(a) [2] Show that ⋅L S  can be written in a simple way in terms of L2, S2, and 

( )22 = +J L S .  You may assume any commutation relations that you know are true 
about L and S, or that you proved in a previous problem. 

 
 It is easy to see that ( )22 2 22= + = + ⋅ +J L S L L S S , where we recall that L and S 

commute.  It is easy then to rewrite this as ( )2 2 21
2⋅ = − −L S J L S . 

 
(b) [2] Show that the operator ⋅L S  commutes with L2, S2, and J2.  

 
 This is trivial.  We already know that L2, S2, and J2 all commute with each other, so any 
linear combination of them must commute as well. 

 
(c) [3] A more intelligent basis to use would be eigenstates of L2, S2, and J2, and zJ , so 

our states would look like , , , jn l j m  (the constant s is implied).  Assuming our 
states are orthonormal, work out a simple formula for  

  , , , , , , .j jn l j m n l j m′ ′ ′ ′ ⋅L S  

 
 Again, this is trivial.  We have 
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(d) [3] For arbitrary l =0, 1, 2, … and s = ½, what are the possible values of j?  Work 

out all matrix elements of the form above in this case. 
 
 The quantum number j runs from 1

2j l s l= − = −  to 1
2j l s l= + = + .  This means that 

the only allowed values are 1
2j l= ±  for l > 0, and for l = 0 only 1

2j =  is allowed.  Setting 
1
2j l= ± , we have 
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