
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Midterm Exam, Fall 2022 

 
 Please note that some possibly helpful formulas and integrals appear on the second page.  
Note also that there is one problem on the second page.  Each question is worth 20 points, with 
points for each part marked separately. 
 
1. A particle of mass m lies in a potential V(x), where 
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0
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 This potential is sketched at right.  We will attempt to find bound states, 0 < E < V0. 
(a) [7] For the region 0 < x < a, write the most general solution of Schrödinger’s time 

independent equation, and relate any parameters to the energy E, applying 
appropriate boundary conditions at x = 0. 

 
 Schrödinger’s equation in this region is just  
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2 .
2

dE
m dx

ψψ = −
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Because the energy is positive, we need to find functions that have a second derivative that is 
equal to minus itself.  The possible solutions look like ( )sin kx  and ( )cos kx .  Since we need the 

function to vanish at the origin, we reject ( )cos kx .  Substituting ( )sin kx  into Schrödinger’s 
equation, we find the energy and the general solution to the equation: 

( )
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(b) [7] Repeat for the region x > a, applying appropriate boundary conditions at x = ∞. 

 
 In this region, Schrödinger’s equation is now 
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Since V0 > E, the solutions to this equation now look like xe β± .  But we don’t want the wave 
function to blow up at infinity.  Substituting xe β−  into Schrödinger’s equation, we find  
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(c) [6] What boundary conditions can you at x = a?   Take the ratio (or substitute) these 
equations to find a relation between the parameters found in parts (a) and (b), 
cancelling any normalization factors.  You do not need to solve these equations. 

 
 Because the potential is finite at x = a, the wave function and its first derivative must both 
be continuous, so ( ) ( )I IIa aψ ψ=  and ( ) ( )I IIa aψ ψ′ ′= .  Substituting our explicit forms, this 
becomes 

( ) ( )sin and cos .a aA ka Ce Ak ka C eβ ββ− −= = −  

If we substitute the first equation into the second, we find ( ) ( )cos sin aAk ka A ka e β−= − , or  

( )cot .k ka β= −  

It is not hard to see that 2 2 2
02k mVβ+ =  , so if we want we can rewrite this entirely a function 

of k, but you then have to solve the equation numerically. 
 
 
2. A quantum mechanical system is two dimensional, and in a choice of basis, the 

Hamiltonian is 
1 0
0 2

H ω
 

=  − 
  and
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B b 
=  

 
.  At t = 0, it is in the state 

( )
1

0
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t  
Ψ = =  

 
. 

(a) [7] For the operator B, find the eigenvalues and normalized eigenvectors. 
 
 Ignoring the factor of b, we can find the eigenvalues of the remaining matrix by solving 
the characteristic equation 

( )( ) ( )2 24 2
0 det 4 1 2 2 4 4 4 5 5 .

2 1
λ

λ λ λ λ λ λ λ λ λ
λ

− 
= = − − − ⋅ = − − + − = − = − − 

 

The eigenvalues for this matrix are therefore 0 and 5, or restoring the factor of b, 0 and 5b. 
 The eigenstates can be found by putting in an arbitrary vector and demanding that the 
matrix times the vector is the vector times the appropriate eigenvalue, so our equations are: 

4 2 0 4 2 5
0 , or 5 .

2 1 0 2 1
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β β β β β
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We then expand these out, in each case getting two equations: 
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or ,
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As usual, in each case we get redundant equations.  Our eigenvectors are now 



2
0 or 5 .

2
b

α β
α β

   
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We still have to normalize these, which is achieved by demanding 2 2 2 24 1 4 1α α β β+ = = + = . 
So we find 1 5α β= = , but to normalization, and we have 

1 21 10 and 5 .
2 15 5

b   
= =   −   

 

 
(b) [4] At time t = 0, the system is measured using the operator B.  What is the 

probability that the result comes out the more positive eigenvalue?  Assuming it 
does, what is the state immediately after the measurement? 

 
 The probability of getting the positive eigenvalue 5b is given by 

( ) ( )
2 2

2 11 2 45 5 2 1 80%.
0 55 5

P b b    = Ψ = = = =   
  

 

Afterwards the state will be an eigenstate of B with eigenvalue 5b, so it is in the state 5b . 
 

(c) [5] After the measurement described in part (b), what is the state vector at general 
time t?  What is it at the specific time t = π/ω? 

 
 The Hamiltonian is diagonal, so each of the two components will simply acquire a phase 
of iEte−  , which works out to i te ω−  on the top component, and 2i te ω  on the lower component.  So 
we would have the state evolve from  

( ) ( ) 2
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i t
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ω

−  
Ψ = = → Ψ =   

   
 

At ωt = π, 1ie π− = −  and 2 1ie π = , so  

( )
21 .

15
t π ω

− 
Ψ = =  

 
 

 
(d) [4] At this time, B is measured again.  What is the probability this time that the 

result will be the more positive eigenvalue? 
 
 We use the same formula as before, namely 

( ) ( ) ( )
2 2 2

2 21 1 1 3 95 5 2 1 4 1 36%.
1 5 5 255 5
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3. A particle of mass m lies in the potential 
( ) ( ) ( )4 4 4 2 2, ,V x y z x y z x z y z xyzα β γ= + + + − + . Consider the rotation operator that 

rotates by 90° around the z-axis and then flips z, so that ( ) ( ), , , ,x y z y x z= − − , i.e. 
, ,x y y x z z′ ′ ′= = − = − . 

(a) [6] Show that this is a symmetry operation; that is, V is unchanged by this 
transformation. 

 
 We simply substitute and start calculating: 

( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

4 4 4 2 2

4 4 24 2

4 4 4 2 2

, ,

, , .

V x y z x y z x z y z x y z

y x z y z x z y x z

x y z x z y z xyz V x y z

α β γ

α β γ

α β γ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + − +

= + − + − + − − − + − −

= + + + − + =

 

 
(b) [7] Argue that if this symmetry operation were performed a particular number of 

times, the resulting symmetry operation would correspond with the identity 
operation.  How many times? 

 
 Logically, if you are rotating around z four times by 90°, that would end up as no rotation.  
If you are simultaneously flipping the z-direction, doing it four times also result in no flip, so the 
answer to this question is four operations equals the identity operator.  You can also demonstrate 
this by performing the rotation operator four times, each time switching the first two arguments 
and then placing a minus sign on the second and third operators: 

( ) ( ) ( ) ( ) ( )4 3 2, , , , , , , , , , .x y z y x z x y z y x z x y z= − − = − − = − − =     

 
(c) [7] Argue that eigenstates of the Hamiltonian can be chosen to also be eigenstates of 

this symmetry operation.  What are the possible eigenvalues of these states under 
the symmetry operation? 

 
 The kinetic term is invariant under any rotation, and we have already demonstrated that 
the potential is also invariant under this transformation.  Hence this rotation commutes with the 
Hamiltonian, and therefore the states can be simultaneously diagonalized.  Hence we can choose 
our eigenstates of the Hamiltonian to also be eigenstates of ( )R  , so we have 

( ), , , , , .nH n E n R n nλ λ λ λ λ= =  

Interestingly, if you repeat the operation four times, you get one, so ( ) ( ) ( )4 4 1 1R R R= = =  .  
It follows that  

( )4 4, , , .n R n nλ λ λ λ= =  

It follows that 4 1λ = .  The eigenvalues of this are 2 4 2ij ije eπ π= , where j = 0, 1, 2, 3, so the 
values are 0 1e = , 2ie iπ = , 1ieπ = − , and 3 2ie iπ = , or in summary, 1λ = ±  or iλ = ± . 



4. A particle is in the ground state of the infinite square well at time t = 0. 
(a) [10] Calculate the expectation values X , 2X , P  and 2P  for this state. 
 

 This is straightforward, though many of the integrals are a little messy.  We start with the 
wave function, which for the ground state is ( ) ( )1 2 sinx a x aψ π= .  We therefore have 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )
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*
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4 2
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a

a
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πψ ψ

πψ ψ
π π

π π πψ ψ

πψ ψ

 = = = ⋅ = 
 

     = = = − = −     
     
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   
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∫ ∫

∫ ∫

∫ ∫

∫









2 2 2 2 2
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x adx
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π π π π     − = ⋅ =          
∫
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(b) [5] Find the uncertainties x∆  and p∆ , and check the uncertainty relation. 

 
 We have  

( )( )

22 2 2
2 2

2 2
22 2

2

2

2

1 1 1 1 1 ,
3 2 4 12 2

0 ,

1 1 1 0.568 .
12 2 12 2
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a
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π
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 
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 
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The uncertainty relation says the final expression must exceed /2, which it does. 
 

(c) [5] Suppose that before we did the measurement, we allowed the system to evolve 
under the influence of the Hamiltonian until an arbitrary time t.  How would this 
change the answers to parts (a) and (b)? 

 
 Because it is in an eigenstate of the Hamiltonian, the wave function will simply get 
multiplied by iEte−  .  This phase change simply factors out of every factor of ψ , and it will then 
cancel with the factor of iEte+   appearing in *ψ .  Therefore the answer to every part of the 
question will be unchanged. 
 
 



5. A particle of mass m lies in the harmonic oscillator potential 2 21
2V m xω= .  At t = 0, the 

wave function is given by ( ) 22 2, 0 xx t Nx e α−Ψ = = , where mα ω=  . 
(a) [4] What is the normalization constant N? Some possibly helpful integrals are given 

below. 
 
 We find the normalization of the state by demanding that 

( )2* 2 4 2 5/2 25
2 5

31 .
4

xdx N x e dx N Nα πα
α

− −= Ψ Ψ = = Γ =∫ ∫  

Solving for N, we have 

1/4.54 2 ,
3 3

N α α α
π π

 = =  
 

 

so that the wave function at t = 0 is 

( ) 2
1/4.

2 22, 0 .
3

xx t x e αα α
π

− Ψ = =  
 

 

 
(b) [6] Write this wave function in the form ( )0 n nn

t c φΨ = =∑ , where nφ ’s are the 
eigenstates of the Hamiltonian.  The explicit forms for the first three are given below. 
Check that the state vector is normalized in the new basis of the nφ ’s. 

 
 We need to combine the φ’s in such a way to make the constant terms cancel, but keep 
the quadratic term.  It is pretty obvious that 

 ( ) ( ) ( ) 21/4 2 2
0 22 2 .xx x x e αφ φ α π α −+ =  

Comparison with ( ),0xΨ  then tells us that  
The wave function at t = 0 is therefore 

( ) ( ) ( )0 2
1 2,0 ,

33
x x xφ φΨ = +  

or to put it more succinctly, ( ) 1 2
0 233

0 φ φΨ = + .  Hence we have 1
0 3

c =  and 2
2 3c = , 

with all the other cn’s vanishing.  It is obvious that 2 2 2
0 2 1nn

c c c= + =∑ , so it is normalized in 
this new basis. 
 



(c) [5] Write the state vector ( )tΨ  at all times.   
 

 The energy of the n’th state of the harmonic oscillator is ( )1
2nE nω= + , and each of the 

eigenstates is then multiplied by a factor of ( ) ( )1
2exp expniE t i t nω − = − +  , so we have 

( ) 2 5 21 2
0 233

.i t i tt e eω ωφ φ− −Ψ = +  

 
(d) [5] Find the probability density that the particle is at the origin x = 0 at all times.  

Simplify as much as possible. 
   

 Substituting in our explicit forms for the wave functions, we have 

( ) ( )

( )

2 2

2

1/4 1/4
2 2 2 2 5 2

1/4
2 2 5 2 2 5 2

1 2 1, 1
33 2

1 2 .
3

x i t x i t

x i t i t i t

x t e e x e e

e x e e e

α ω α ω

α ω ω ω

α α α
π π

α α
π

− − − −

− − − −

   Ψ = + −   
   

 = + − 
 

 

Evaluating this at x = 0, we have  

( ) ( )
1/4

2 5 21,0 .
3

i t i tx e eω ωα
π

− − Ψ = − 
 

 

The probability density at x = 0 is then 

( ) ( ) ( ) ( )( )

( ) ( )

* 2 5 2 2 5 2

2 2

1,0 ,0 ,0
3

1 21 1 1 cos 2 .
3 3

i t i t i t i t

i t i t

ax x x e e e e

e e t

ω ω ω ω

ω ω

ρ
π

α α ω
π π

− −

−

= Ψ Ψ = − −

= − − + = −  

 

 



Infinite Square well: mass m, region 0 < x < a: ( )
2 2 2

2

2 sin , .
2n n

nx nx E
a a ma

π πψ  = = 
 

  

 
Harmonic Oscillator Wave Functions: 

( ) ( ) ( ) ( )2 2 2
1/4 1/4 1/4

2 2 2 2
0 1 2

1, 2 , 2 1 .
2

x x xx e x xe x x eα α αα α αφ φ α φ α
π π π

− − −     = = = −     
     

 

 
Possibly Helpful Integrals: n is assumed to be a positive integer, and A is positive 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
1 21

2

3 5 3 7 15 9 105 9451 1 11
2 2 2 2 4 2 8 2 16 2 32

even,
0  odd.

, , , , , .

nn
n Ax A nx e dx

n

π π π π π π

− ++∞ −

−∞

Γ= 


Γ = Γ = Γ = Γ = Γ = Γ =

∫  

2 2

0 0 0

2 2
2 2

0 0 0

2 2
2 2

0

sin cos , sin cos 0,
2

sin cos , sin cos ,
4 4

1 1sin
6 4

a a a

a a a

a

nx nx a nx nxdx dx dx
a a a a

nx nx a nx nx ax dx x dx x dx
a a a a n

nxx dx
a n

π π π π

π π π π
π

π
π

       = = =       
       

       = = = −       
       

   = −   
   

∫ ∫ ∫

∫ ∫ ∫

∫ 3 2 2 3
2 2

0

1 1, cos .
6 4

a nxa x dx a
a n

π
π

   = +   
   ∫

 


