
 Physics 741 – Graduate Quantum Mechanics 1 

Solutions to Final Exam, Fall 2016 
 
 Each question is worth 25 points, with points for each part marked separately.  Some 
possibly useful formulas can be found at the end of the exam. 
 
1. The  *0  baryon is a particle made of three quarks, one each up (u), down (d), and 

strange (s).  These quarks are each spin 1
2 , and they are believed to have no orbital 

angular momentum. 
(a) [10] Based only on the spins of the quarks, if we measured 2

uS , the spin on just the 

up quark what would we get?  What could we possibly get if we measured the sum 
of the up and down quarks, 2

udS , where ud u d S S S ?  What if we measured the 

total spin squared 2S , where u d s  S S S S ? 

 

 The eigenvalue of any angular momentum operator is  2 2 2j j J  .  For just the up 

quark, since 1
2s  , we have  22 2 231 1

2 2 4u
    S   .  When we add two spins, we can get total 

spin from 1 1
2 2  to 1 1

2 2 , so it is 0 or 1.  Hence we would have 2 0ud S  or 2 22ud S  .  Finally, 

when we add the strange quark, we would be adding spin 0 or 1 to spin 1
2 .  If we are adding 0, 

we would get total spin running from 1
20  to 1

20 , so it must be 1
2s  .  If we had spin 1, then 

it runs from 1
21  to 1

21 , so the possibilities are 31
2 2,s  .  Hence the total spin squared will be 

2 2 2 23 3 15
4 4 4,   or  S    .  The repetition of the 23

4   simply signifies that there are two separate 

ways to make this total. 
 

(b) [8] In fact, the *0  is known to be spin 3
2 .  In light of this, how, at all, would your 

answers change to part (a)? 
 

 Obviously, the answer 2 23
4u S   is unchanged, and the answer for the total is now 

2 215
4S  .  To get total spin 3

2 however, at the intermediate step, we must have had spin 1, so this 

implies 2 22ud S  .  They are now all definite. 

 
(c) [7] A particular *0  has its spin around the z-axis measured, and it is found to have 

eigenvalue  1
2  .  If this same *0  were to have the z-component of the strange 

quark measured szS  or the combined z-component spin of the up and down quarks 

,ud zS , what would be the possible outcomes? 

 The measurement of szS  for a spin 1
2  particle is 1

2  .  Since the total z-component of 

angular momentum is ,z ud z szS S S  , we have ,ud z z szS S S  , and hence the eigenvalue will be 
1 1

, 2 2ud zS     , so that is must be either 0 or  . 



2. An electron is in a region with scalar potential  2 21
2U c x y    and vector potential 

 2 21
2

ˆb x y A z  

(a) [5] Find the electric and magnetic field from these potentials 
 

 We use the formula 

     
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(b) [8] Write the Hamiltonian explicitly.  Show that it commutes with one of the 

momentum operators.  Which one? 
 
 We first write e π P A  and then substitute into the provided formula.  We have 
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We note that the operator Pz commutes with every operator appearing in here, so  , 0zH P  . 

 
(c) [12] Find the commutator of Lz and Sz with the Hamiltonian H.  Show that only one 

of Lz, Sz, and z z zJ L S   commutes with H.  To save time, you may use the fact that 

Lz commutes with both P2 and with 2 2X Y . 
 
 If you use the additional information that   , 0z zL P  , then it is obvious that everything 

commutes except possibly the last spin term.  For this term, we have 

        
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3. The one dimensional infinite square well with width a for spinless particles of mass m 
has eigenstates n , which have energy  2 2 2 22nE n ma  . 

(a)  [3] What are the corresponding energies for a three-dimensional infinite square 
well of side a? 

 
 The energies are just the sums of the energies in the three directions, so  

 
2 2

2 2 2
22npqE n p q

ma


  


. 

 
(b) [8] Suppose we have 14 spin-0 identical non-interacting particles in this same 3D 

square well.  Would these particles be bosons or fermions?  In the ground state, 
which states would be occupied, and what would be the energy of the ground state? 

 
 Spin 0 particles are bosons.  The ground state would just involve all the particles being in 
the same state, so they would all be in the state 111 , and the total energy would be 14 times the 

energy of a single particle, so  

2 2 2 2

2 2

3 21
14 .

2totE ma ma

 
  

 
 

 
(c) [14] Suppose we have 14 spin-½ identical non-interacting particles in this same 3D 

square well.  Would these particles be bosons or fermions?  In the ground state, 
which states would be occupied, and what would be the energy of the ground state? 

 

 Because these states have spin, a single particle would now be denoted by ,npq  , 

where     is the spin state.  Because of the Pauli exclusion principle, you can only put one 
particle in each state, but we can put them in different spin states, so we will fill in the lowest 
seven energy states with both spins.  So the occupied states are  

 111 112 121 211 122 212 221, , , , , , , , , , , , ,              

The first state has 2 2 2 3n p q   , the next three have 2 2 2 6n p q   , and the last three have 
2 2 2 9n p q   , so in total the energy, remembering to double for each spin state, is 

 
2 2 2 2

2 2

48
1 3 3 6 3 9 2 .

2totE ma ma

 
       

 
 

 



4. Two electrons are in one dimension, one each in the two orthonormal wave functions 

 1
xx e     and   3

2 2 xx xe    .  However, these wave functions do not take 

into account the electron spin, nor do they take into account the fact that they are 
fermions.  
(a) [9] Assume the two particles are in one of the two spin states   1

2
      .  

In each case, write out explicitly the properly normalized space wave function 
 1 2,x x . 

 
 It is easily seen that the spin states have been properly normalized.  Note that the spin 
part is either symmetric or anti-symmetric, depending on the sign of the  .  The space part must 
be the opposite to compensate, so for the spin state  , the space part must be 

 1
1 2 2 12

      .  Note that these are properly normalized.  Hence the wave function 

must be 

            1 221
1 2 1 2 1 1 2 2 1 2 2 1 1 22
, , .x xx x x x x x x x x x e e         

        

 
(b) [8] For each case, find the probability that the first particle is at a positive position, 

1 0x  . 

 
 We integrate the probability density over two dimensions for the whole region 1 0x  , so 
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The cross term vanished because the 2x  integral is an integral of an odd function over an even 

interval. 
 

(c) [8] For each case, find the probability that both particles are at a positive position, 

1 2, 0x x  . 

 
 The calculation is the same as before, but with a different region of integration: 

     
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This works out to 1
8 12.5%  for   and 3

8 37.5%  for  . 

 

5. A particle is in the state  
 
 

1
2

1
2

cos

sin





 

   
 

, but the angle   is unknown, and has a 1
3  

chance of being in each of the values 1
20, ,   . 

(a) [8] Find the state operator  . 
 
 We simply use the formula 

     
1
21 1

2 2 1
2

3 1 11 1 1
2 62 2 2 2

3 1 11 1 1
6 22 2 2 2

1 01
1 0 0 1

0 13

1 0 0 01 1
.

0 0 0 13 3

i i i
i

f  
     
               

         
             

         


 

 
(b) [9] Find the expectation value of the operators xS  and zS  for this state operator. 

 
 To find these, we simply take the trace of the product of iS  with  , so we have 

 

 

1 1 1 1
2 6 6 21 1 1 1 1

2 2 2 3 61 1 1 1
6 2 2 6

1 1 1 1
2 6 2 61 1 1

2 2 21 1 1 1
6 2 6 2

0 1
Tr Tr Tr ,

1 0

1 0
Tr Tr Tr 0 0.

0 1

x x

z z

S S

S S




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         

     
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(c) [8] Show that if the Hamiltonian is xH aS , the state operator will be time 

independent. 
 
 The time derivative of the state operator is given by 

   
1 1 1 1
2 6 2 61 1

2 2 1 1 1 1
6 2 6 2

1 1 1 1
6 2 6 21

2 1 1 1 1
2 6 2 6

0 1 0 1
, ,

1 0 1 0

0.

x

d
i H a a
dt

a

   
                  
        

           
     

  



 

Since the time derivative vanishes, it will not change (and it will continue to not change). 
 
 



6. This problem is to be worked entirely in the Hamiltonian formulation of quantum 
mechanics.  Consider a particle of mass m in the one-dimensional linear potential 
 V X aX   

(a) [9] What is the Hamiltonian?  Find expressions for the derivatives of the position 
operator X and momentum operator P. 

 
 The Hamiltonian is, of course, just 

 2 21 1
.

2 2
H P V X P aX

m m
     

Keep in mind that all of these operators are time-dependent in this formalism.  The operators 
evolve according to  

        

   

2 1
, , , , ,

2 2 2
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P H P X P a

dt

         


    

 
   


  

 

 
(b) [9] Solve for the position and momentum operators at time t in terms of the 

operators at time 0. 
 
 The second one is easy to solve.  We simply integrate the trivial equation and match the 
boundary condition at t = 0, so we have 

   0 .P t at P   

We then substitute this into the other equation, and integrate again, again using the boundary 
conditions to match at X(0): 

 

     
2

1 1
0 ,

1
0 0 .

2

d
X P P at

dt m m

at
X t P t X

m m

    

  
 

(c) [7] Show that there is a minimum uncertainty relation between the uncertainty of 
the initial position  0x  and the position at time t,  x t . 

 
 We now use the generalized uncertain principle to get a relationship between the 
uncertainty of X(0) and X(t).  Note that the first term in X(t) has no operators, so it commutes 
with everything. 

             

   
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    




 



Possibly Useful Formulas 
 
 
 
 
 

 
 
 
 

Possibly Useful Integral: 1

0
!n x nx e dx n 

     

 
 

EM Fields 
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Spin-½: 1
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Generalized Uncertainty 

    1
2 ,a b i A B    

Heisenberg Evolution 

 ,
d i
A H A

dt



 


