
 Physics 741 – Graduate Quantum Mechanics 1 

Solutions to Final Exam, Fall 2018 
 
 Each question is worth 25 points, with points for each part marked separately.  Some 
possibly useful formulas can be found at the end of the exam. 
 

1. A hydrogen atom is in the state 1 1 2 1
3 2 3 22,1,0, 2,1,1,    , where we are using the 

notation , , , sn l m m , where l, m, and ms correspond to L2, Lz, and Sz respectively. 

(a) [5] If one were to measure the operators Lz, and Sz, what would be the possible 
outcomes and corresponding probabilities? 

 
 The states given , , , sn l m m  are eigenstates of Lz, and Sz with eigenvalues m  and sm  

respectively.  The state 1
22,1,0,  has 0zL   and 1

2zS   , while 1
22,1,1,  has zL    and 

1
2zS    .  The corresponding probabilities are 
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 (b) [20] If one were to measure J2 and Jz, what would be the possible outcomes and 

corresponding probabilities? 
 
 The two states 1

22,1,0,  and 1
22,1,1,  each have   1

2z sJ m m    ; hence the 

outcome of a measurement of Jz is automatically 1
2  , so  1

2 1.zP J    

To find the probability that the outcome of a measurement of J2 has a particular value 

 2 2j j , we must find the overlap , , , jn l j m  , sum it over values of n, l, and mj, and then 

square its amplitude.  However, in this case, we know that n = 2, l = 1, and 1
2jm  , so there is 

only a single term.  Knowing that we are adding orbital angular momentum 1 to spin ½, the only 
outcomes are  31 1 1

2 2 2 21 , ,1 ,j     , the only possible outcomes are 2 23
4J   and 2 215

4J  .  

The corresponding amplitudes then work out to just be Clebsch-Gordan coefficients, so 
1
2, , , , , , 1, ; , ,j s s jn l j m n l m m m m j m .  So we have 
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2. An electron is in a region with electric field 0 ˆEE x  and magnetic field 0 ˆBB z . 

(a) [8] Find an electrostatic potential U  that alone can account for this electric field.  
Which coordinate(s) is it independent of?  Find a vector potential A that is 
independent of the same coordinate(s) and accounts for the magnetic field. 

 
 Since there is no time-dependance, it seems reasonable to pick U and A so that they are 
both time-independent.  We therefore want to have  U E , so we need 0E U x   .  The 

simplest solution is just 0 .U E x  This is independent of both y and z, so it seems like it might 

be a good idea to pick A to depend only on x.  To get B in the z-direction, we want A to exist in a 
perpendicular direction.  Since one of the contributions to zB  is yA x  , we therefore have 

0yA x B   , and we guess 0 ˆB xA y .  We therefore have 

0 0ˆ and .B x U E x  A y  

 
(b) [9] Write the Hamiltonian explicitly.  Find three operators that commute with the 

Hamiltonian and with each other.  These operators might be spin operators, 
momentum operators, or angular momentum operators. Give names to their 
corresponding eigenvalues. 

 
 We use the formula given in the equations together with e π P A  to get 
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We note that this Hamiltonian commutes with yP , zP , and zS , and we label the corresponding 

eigenvalues as yk , zk , and sm . There is no restriction on yk  or zk , but ms can only take on 

the values 1
2 . 

 
(c) [8] Substitute the corresponding eigenvalues into the Hamiltonian, and argue that 

the remaining Hamiltonian is one whose eigenvalues and eigenstates you can find.  
You do not actually have to find these eigenvalues and eigenstates. 

 
 Substituting in the corresponding eigenvalues, we have 
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This can be written as the kinetic energy of a particle in one dimension together with a potential 
that, when squared out, is just a quadratic in X.  Completing the square will turn this problem 
into a 1D-harmonic oscillator that is centered somewhere away from the origin.  Of course, we 
know how to solve the harmonic oscillator, though in this case writing the states out would be a 
pain. 



3. N identical spin-½ non-interacting particles lie in the ground state of a one-dimensional 
infinite square well of width L. For a single particle, the eigenstates are 1

2,n  , with 

energies  2 2 2 22nE n mL  . 

(a)  [6] Would these particles be bosons or fermions?  Which states would be occupied?  
You may assume N is even. 

 
 Since they have spin ½, they will be fermions, which satisfy the Pauli exclusion principle.  
The states what will be occupied are the first N state, which, since there are two states for each 
value of n, will be the states 1

2,n   for 1
21, 2, ,n N  .  If N were odd, the state  1

2 1n N   

would be half-filled, with all lower states filled. 
 

(b) [10] What is the total energy for these particles?  In the limit of large N, show your 
answer can be written in the form FE NE , where EF is the energy of the highest 

occupied state, and   is a simple constant. 
 
 The Fermi energy is just En for the highest state occupied, which is 1

2n N , so  
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The total energy is the sum of the energy of all the particles.  We multiply by 2 to account for the 
two spin states, and add up the energies for each particle, to give us 
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In the limit N  , this becomes 1
3 FE NE . 

 
(c) [9] Find the degeneracy “pressure”, P E L   .  Write your answer in terms of 

N L   in the limit of large N. 
 
 Taking the derivattive is trivial; we find 
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In the limit N  , this becomes 2 2 3 12P m   . 
 

Possibly helpful formulas:     21 1
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4. Two particles are  in a one-dimensional infinite square well with allowed region 
a x a   .  In this region, the wave function is,    1 2 1 2,x x N x x   where N is a 

normalization constant.  The   simply means you are doing two problems at once, so it 
might be + or it might be   (you have to do both cases).  
(a) [7] What is the correct normalization constant N? 

 
 The nomalization condition is 
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(b) [7] What is the probability that particle one has positive position, 1 0x  ? 

 
 The only thing that needs to change from the previous computation is that the limits on x1 
need to change, and we substitute the value of N computed in part (a).  The probability is 
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(c) [8] What is the probability that both particles have positive position 1 2, 0x x  ? 

 
 This time we need to change both integral limits, which means we will have to back up 
and do more work this time.  We have 
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(d) [3] Suppose the particles are identical particles.  What would be the appropriate 

sign for the   if they are both bosons?  If they are both fermions?  Assume that any 
spin state would be symmetric, so their spin state looks like ,  . 

 
 The plus sign is appropriate for bosons, and the minus sign for bosons. 



5. A harmonic oscillator is in the state  1
2

7 8ie    ; unfortunately, the angle   is 

uncertain, and is uniformly distributed across the interval 0    . 
(a) [10] Find the state operator  .  Your answer should look something like 

,, n mn m
a n m  .  Check that  Tr 1

n
n n   . 

 
 If we knew the phase  , we would have    .  However, since we don’t, we have 

to take this combination and average it over all phases in the relevant range, so we have 
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The trace is  
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(b) [7] Find the expectation value of the Hamiltonian H for this state operator. 

 
 We use the formula  TrA A  to give us 
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(c) [8] Find the expectation value of the momentum P for this state operator. 

 
 We use the formula  TrA A  to give us 
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6. The Kernel or propagator for the Harmonic oscillator with potential 2 21
2 m x is given by  
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(a) [7] From this, deduce the free propagator in the limit 0  . Simplify as much as 
possible. 

 
 We simply take the limit 0  , but must be a bit careful to not get zeros in the 
denominators.  This may be accomplished by realizing that for small  , we approximate 
sin   and cos 1  , so we have 
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(b) [18] At 0t  , the wave function is given by     21 4 2, 0 Axx t A e    .  Find the 

wave function at 1
2t  .  Simplify as much as possible.  

 

 We first rewrite this as     2
0

1 4 2
0 0, 0 Axx t A e    , and then we have 
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We now set , 1
2t  , which simplifies things considerably: 
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This is an integral of the form given in the useful formulas, with A  and im x    .  So 
we have 
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Possibly Useful Formulas 
 
 
 
 
 

 
 
 
 
 
 

Possibly Useful Integral: 
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