Physics 742 — Graduate Quantum Mechanics 2
Solutions to First Exam, Spring 2019

Please note that some possibly helpful formulas are listed below or on the handout. Each
question is worth twenty points.

1. A particle of mass m in one dimension is in the potential V a\/7 Using the WKB

method, estimate the energy of the n’th eigenstate. Hint: 1 found it useful to define
x=y and z=E-ay.

We first need to find the turning points, the points where £ = V a\/7 It is pretty

trivial to rewrite this as |x| = E’/a? , with solutions x =+ E*/a’. We therefore have
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We now make two substitutions: first, let x = y*, and then let z= E —ay. The latter can be

inverted to give y =(E—z)/a. We then have
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It is now straightforward to solve this for £, so we have
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It is worth noting the similarity of functional form of this expression and the form for the
next problem. If you substitute #» = 0 in this formula, the final factor from this equation works
out to 0.6429, and the next equation yields 0.625.

Possibly Helpful Integrals
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2. A particle of mass m in one dimension is in the potential V a\/7 Using the
variational principle with trial wave function y (x) = ¢ 2 , estimate the energy of the

ground state. I recommend using (i |P*|y)= |P| 1//>|2 when estimating the kinetic term.

We need to caleulate (y|w), (w|P*|w), and (w |V (x)|y). We have
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The normalized expectation value of the energy, therefore, would be
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We now wish to minimize this with respect to A, which we do by taking the derivative.
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We now substitute this back in to estimate the ground state energy:
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3. A particle of mass m in two dimensions is in the potential
V(x)=1imae’ (X2 + Y2)+5X2Y2 , where ¢ is small. Name and find the energies of

the eigenstates of the unperturbed Hamiltonian in the limit 6 =0. Find the
ground state eigenstate to first order in 6, and its energy to second order in ¢ .

To find the ground state eigenstate we need to find W|OO> , which is
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The ground state eigenstate, to first order in ¢, is
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The ground state energy is given by
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4. An electron is in a three-dimensional harmonic oscillator with Coulomb potential
V.(r)=4+mo’r’.

c

(a) Write the spin-orbit coupling in terms of L’, S*, and J*, where J =L +8S.
We start by using the standard trick of writing
L-S=1(L+8) -1’ -18?=1J? 112 1§
Substituting this in, together with the given Coulomb potential, we have
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(b) For I = 0, what are the eigenvalues or possible eigenvalues of L’, S*, and J*? Argue
that for states with / = 0, the spin-orbit coupling causes no shift in energy.

Electrons have spin ', and j runs from |l —s| to |l + s|. In the case of / = 0, the only
possibility is j =4 =s, and therefore J° =8’ =7’ (4 +1) =37, while L’ =7 (0+0)=0.
Hence

Weo|l =05 =14, jum,) = g (32 -0-3021=0.5=1, jm ) =0.
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Hence there is no shift in the energy.

(c) For [ =1, what are the eigenvalues or possible eigenvalues of L*, S°, and J*? Find
the corresponding shift in energies.

We still have 87 =27°, but now j can take on the values j =|/—s|=[l-4|=1 or
j=I+s=1++=2, and therefore we can have either J* =37* or J> =(3+3)n* =Ln’. We

also now have L =(1+1)7’ = 22> We therefore have two possibilities:
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5. A particle of mass x and wave number k& moving in the +z direction scatters from a
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potential V' =V xye , where V, is small. Find the differential and total cross-section

in the first Born approximation. For the total cross-section, you may leave one integral
uncompleted.

We must first find the Fourier transform. In this case, this is most easily done in
Cartesian coordinates, so we have
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We now substitute this into the formula for differential cross-section to yield
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We now recall that K =k’—k . The initial momentum is k = £z , and the final is k' =kt , so
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We also can use the formulal (or rederive it) K* =2k (1—cos@). We therefore have
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We now simply integrate this over solid angle, so we have
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There is nothing inherently difficult about the final integral, but the result will be annoyingly
complicated, so we’ll just leave this last integral undone.

1D Harmonic Oscillator

Possibly Helpful Formulas Born Approximation X = (a + aT)
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