
Physics 742 – Graduate Quantum Mechanics 2 
Solutions to First Exam, Spring 2023 

 
 Please note that some possibly helpful formulas are listed below or on the handout.  The 
value of each question is listed in square brackets at the start of the problem or part. 
 
1. [10] A particle of mass m in one dimension is in the potential  ( ) 2/3V x xβ −= − .  Using 

the WKB method, estimate the energy of the n’th eigenstate (the energies will be 
negative).  I recommend making the substitution 3/2x y=  and then z Eyβ= + . 

 
 The first step to using the WKB method is to find the turning points, the places where 
( )V x E= . Rearranging slightly, we see that 2/3E xβ −− = , so ( )3/2x Eβ= −  with solution 

( )3/2x Eβ= ± − .  We use this as our limits of integration in the WKB formula, which yields 
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where we have used the symmetric nature of the integral to switch it to just positive x and then 
get rid of the absolute values.  We now use the two suggested substitutions to have 
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Solving for E, we have 
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2. [30] A particle of mass m in 3D is in the potential ( ) ( )2 2 2 21

2, ,V x y z m x y z xyω λ= + + + , 

where λ is small.   
(a) [4] Name and give the energies of the eigenstates of the unperturbed 

Hamiltonian in the limit λ = 0. 
(b) [13] For the ground state, find the state to first order in λ and the energy to 

second order in λ. 
(c) [13] For the first excited states, find the states to leading order and energies to first 

order in λ. 
 

 This is just a 3D harmonic oscillator, with states  

( )3
2, with .mnpmnp n m pε ω= + + +  

 To find the state and energy to first order for the ground state, we introduce the 
perturbation W XYλ= .  Letting this act on the ground state yields 
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The energy of the ground state will therefore be to second order 
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The ground state to first order will be 
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 There are three first excited states, namely, 100 , 010 , 001 .  We work out W acting 
on each of these to yield 
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There are only two nonzero matrix elements, 010 100W  and 100 010W , so if we list the 

states in the order { }100 , 010 , 001 , the W  matrix will be 
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This matrix is clearly block diagonal, and we see that the third state 001  doesn’t mix at all.  

The other two states are ( )1
2

100 010± , so in summary we have 
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3. [20] A particle of mass m in 3D in the potential  ( ) 3 22
3V r rβ −= − .  Using the variational 

principle with trial wave function ( ) 2rr e λψ −= , estimate the energy of the ground state.  
 
 We need to calculate ψ ψ , 2ψ ψP  and ( )V rψ ψ .  For the kinetic term it is often 

easier to calculate 
22ψ ψ ψ=P P . The quantities are 
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We now put this all together into a formula for the energy, which is 
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 We now want to find the minimum of this potential, which we take by setting the 
derivative to zero to yield 
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We now substitute this back into the formula for the energy, which yields 
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4. [20] The hydrogen nucleus is normally assumed to be a point charge, leading to an 
electrostatic potential ( ) eU r k e r= .  Suppose that the effect of the finite size of the 

nucleus is that this is modified to ( ) ( )1 r Rek eU r e
r

−= − , where the scale of the nucleus R 

is much smaller than the radius of the atom a.  Find an approximate formula for the 
energy shift ε ′ , and argue that it vanishes except for s-wave state (l = 0). Find a formula 
for the shift in energy for the 1s state of hydrogen, with unperturbed wave function 
( ) 3r ar e aψ π−= . 

 
 The potential is the electrostatic potential times the electron charge, which is –e.  Adding 
the kinetic term yields a Hamiltonian 
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We then split this into two terms, an unperturbed Hamiltonian 2 2
0 2 eH k e rµ= −P , and a 

perturbation 2 r R
eW k e e r−= .  This causes a first-order shift in the energy given by 
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 The charge distribution falls quickly to zero on a scale of about R, and on this scale, the 
atomic wave functions are almost constant.  We therefore approximate ( ) ( )0nlm nlmψ ψ≈r , so we 
have 
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We note that the wave function ( )0nlmψ  vanishes except for l = 0, so the contribution vanishes in 

every other case.  We could further simplify this expression using 0
0 1 4Y π=  to simplify the 

expression to ( )2 2 2
00 0 0n e nk e R Rε ′ = .  Applying the formula to the 1s state of hydrogen, we have 
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5. [20] A particle of mass µ  and wave number k scatters from a potential 3 2V rβ −= , 
where β  is small.  Find the differential cross-section in the first Born approximation, 
and the total cross-section for scattering by angles 1

2θ π> .  Hint: when doing the 
Fourier transform, I recommend doing the radial integral last. 

 
 We need to find the Fourier transform of the potential.  Because the potential is 
spherically symmetric, the direction of K can’t matter, and hence we can treat it as if it is in the 
z-direction, so that cosKr θ⋅ =K r . We work in spherical coordinates, and we can, in fact, do the 
integrals in either order, so we have 
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We now substitute this into the equation for the Born approximation, which yields 
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The total cross section is then obtained by integrating over angles, but we want to only include 
angles in the range 1

2π θ π< < , which corresponds to 1 cos 0θ− < < , so we have 
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Had we integrated over all angles, the integral would have diverged in the forward direction, due 
to the long-range nature of the integral. 
 
 
 
 
 
 
 
 
 
 
 
 



Possibly Helpful Formulas: 
 
 
 
 
 
 
 
 
 
 
 
Possibly Helpful Integrals: 
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1D Harmonic Oscillator  
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Born Approximation 
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