Physics 742 – Graduate Quantum Mechanics 2 First Exam, Spring 2019

Please note that some possibly helpful formulas are listed below or on the handout. Each

question is worth twenty points.

- 1. A particle of mass m in one dimension is in the potential $V(x) = \alpha \sqrt{|x|}$. Using the WKB method, estimate the energy of the n'th eigenstate. *Hint*: I found it useful to define $x = y^2$ and $z = E \alpha y$.
- 2. A particle of mass m in one dimension is in the potential $V(x) = \alpha \sqrt{|x|}$. Using the variational principle with trial wave function $\psi(x) = e^{-\lambda |x|/2}$, estimate the energy of the ground state. I recommend using $\langle \psi | P^2 | \psi \rangle = |P|\psi\rangle|^2$ when estimating the kinetic term.
- 3. A particle of mass m in two dimensions is in the potential $V(x) = \frac{1}{2}m\omega^2(X^2 + Y^2) + \delta X^2 Y^2$, where δ is small. Name and find the energies of the eigenstates of the unperturbed Hamiltonian in the limit $\delta = 0$. Find the ground state eigenstate to first order in δ , and its energy to second order in δ .
- 4. An electron is in a three-dimensional harmonic oscillator with Coulomb potential $V_c(r) = \frac{1}{2}m\omega^2 r^2$.
 - (a) Write the spin-orbit coupling in terms of L^2 , S^2 , and J^2 , where J = L + S.
 - (b) For l = 0, what are the eigenvalues or possible eigenvalues of L^2 , S^2 , and J^2 ? Argue that for states with l = 0, the spin-orbit coupling causes no shift in energy.
 - (c) For l = 1, what are the eigenvalues or possible eigenvalues of L^2 , S^2 , and J^2 ? Find the corresponding shift in energies.
- 5. A particle of mass μ and wave number k moving in the +z direction scatters from a potential $V = V_0 x y e^{-\alpha r^2/2}$, where V_0 is small. Find the differential and total cross-section in the first Born approximation. For the total cross-section, you may leave one integral uncompleted.

		1D Harmonic Oscillator
Possibly Helpful Formulas	Born Approximation	$X = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right)$
Spin-Orbit Coupling	$\frac{d\sigma}{d\Omega} = \frac{\mu^2}{4\pi^2\hbar^4} \left \int d^3\mathbf{r} V(\mathbf{r}) e^{-i\mathbf{K}\cdot\mathbf{r}} \right ^2$	$a n\rangle = \sqrt{n} n-1\rangle$
$W_{\text{SO}} = \frac{g}{4m^2c^2} \frac{1}{r} \frac{dV_c(r)}{dr} \mathbf{L} \cdot \mathbf{S}$		
$4m^2c^2 r dr$	$\mathbf{K}^2 = 2k^2 \left(1 - \cos \theta \right)$	$a^{\dagger} \left n \right\rangle = \sqrt{n+1} \left n+1 \right\rangle$

Possibly Helpful Integrals

$$\int_{0}^{\infty} x^{n} e^{-Ax} dx = \begin{cases} n! / A^{n+1} & n \text{ integer,} \\ \Gamma(n+1) / A^{n+1} & \text{all } n. \end{cases} \qquad \int_{-\infty}^{\infty} e^{-Ax^{2}/2 + Bx} dx = \sqrt{\frac{2\pi}{A}} e^{B^{2}/2A},$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}, \quad \Gamma\left(\frac{5}{2}\right) = \frac{3}{4}\sqrt{\pi}. \qquad \int_{-\infty}^{\infty} x e^{-Ax^{2}/2 + Bx} dx = \frac{B}{A}\sqrt{\frac{2\pi}{A}} e^{B^{2}/2A}.$$

$$\int_{0}^{2\pi} \sin^{2} \phi d\phi = \int_{0}^{2\pi} \cos^{2} \phi d\phi = \pi, \quad \int_{0}^{2\pi} \sin^{4} \phi d\phi = \int_{0}^{2\pi} \cos^{4} \phi d\phi = \frac{3}{4}\pi, \quad \int_{0}^{2\pi} \sin^{2} \phi \cos^{2} \phi d\phi = \frac{1}{4}\pi.$$

Possibly Helpful Integrals

$$\int_{0}^{\infty} x^{n} e^{-Ax} dx = \begin{cases} n! / A^{n+1} & n \text{ integer,} \\ \Gamma(n+1) / A^{n+1} & \text{all } n. \end{cases}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}, \quad \Gamma\left(\frac{5}{2}\right) = \frac{3}{4}\sqrt{\pi}.$$

$$\int_{-\infty}^{\infty} e^{-Ax^{2}/2 + Bx} dx = \sqrt{\frac{2\pi}{A}} e^{B^{2}/2A},$$

$$\int_{-\infty}^{\infty} x e^{-Ax^{2}/2 + Bx} dx = \frac{B}{A} \sqrt{\frac{2\pi}{A}} e^{B^{2}/2A}.$$

$$\int_{0}^{2\pi} \sin^{2} \phi d\phi = \int_{0}^{2\pi} \cos^{2} \phi d\phi = \pi, \quad \int_{0}^{2\pi} \sin^{4} \phi d\phi = \int_{0}^{2\pi} \cos^{4} \phi d\phi = \frac{3}{4}\pi, \quad \int_{0}^{2\pi} \sin^{2} \phi \cos^{2} \phi d\phi = \frac{1}{4}\pi.$$

Possibly Helpful Integrals

$$\int_{0}^{\infty} x^{n} e^{-Ax} dx = \begin{cases} n! / A^{n+1} & n \text{ integer,} \\ \Gamma(n+1) / A^{n+1} & \text{all } n. \end{cases}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}, \quad \Gamma\left(\frac{5}{2}\right) = \frac{3}{4}\sqrt{\pi}.$$

$$\int_{-\infty}^{\infty} x e^{-Ax^{2}/2 + Bx} dx = \sqrt{\frac{2\pi}{A}} e^{B^{2}/2A},$$

$$\int_{-\infty}^{\infty} x e^{-Ax^{2}/2 + Bx} dx = \frac{B}{A} \sqrt{\frac{2\pi}{A}} e^{B^{2}/2A}.$$

$$\int_{0}^{2\pi} \sin^{2} \phi d\phi = \int_{0}^{2\pi} \cos^{2} \phi d\phi = \pi, \quad \int_{0}^{2\pi} \sin^{4} \phi d\phi = \int_{0}^{2\pi} \cos^{4} \phi d\phi = \frac{3}{4}\pi, \quad \int_{0}^{2\pi} \sin^{2} \phi \cos^{2} \phi d\phi = \frac{1}{4}\pi.$$

Possibly Helpful Integrals

$$\int_{0}^{\infty} x^{n} e^{-Ax} dx = \begin{cases} n! / A^{n+1} & n \text{ integer,} \\ \Gamma(n+1) / A^{n+1} & \text{all } n. \end{cases} \qquad \int_{-\infty}^{\infty} e^{-Ax^{2}/2 + Bx} dx = \sqrt{\frac{2\pi}{A}} e^{B^{2}/2A},$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}, \quad \Gamma\left(\frac{5}{2}\right) = \frac{3}{4}\sqrt{\pi}. \qquad \int_{-\infty}^{\infty} x e^{-Ax^{2}/2 + Bx} dx = \frac{B}{A}\sqrt{\frac{2\pi}{A}} e^{B^{2}/2A}.$$

$$\int_{0}^{2\pi} \sin^{2} \phi d\phi = \int_{0}^{2\pi} \cos^{2} \phi d\phi = \pi, \quad \int_{0}^{2\pi} \sin^{4} \phi d\phi = \int_{0}^{2\pi} \cos^{4} \phi d\phi = \frac{3}{4}\pi, \quad \int_{0}^{2\pi} \sin^{2} \phi \cos^{2} \phi d\phi = \frac{1}{4}\pi.$$