Physics 742 – Graduate Quantum Mechanics 2 First Exam, Spring 2024

The value of each question is listed in square brackets at the start of the problem or part.

- [20] A spin-½ particle is in the spin state |ψ_φ⟩ = 1/√2 (1/e^{iφ}), but the phase φ is randomly chosen in the range 0 < φ < π. Note that the Pauli matrices σ_i are given at the end of the test.
 (a) [7] What is the state operator ρ? Check that the trace has the correct value.
 (b) [7] What would be the expectation value of each of the three spin operators S_i = ½ħσ_i?
 (c) [6] True or false: If the Hamiltonian is H = ωS_y, the state operator is independent of time.
- 2. [20] This problem should be worked entirely in terms of the Heisenberg formulation. A particle of mass *m* in one dimension has Hamiltonian $H = P^2/2m FX$.
 - (a) [7] Find in this formalism equations for the time derivatives $\frac{d}{dt}X(t)$ and $\frac{d}{dt}P(t)$.
 - (b) [6] Find P(t) in terms of P(0) and t. Then find X(t) in terms of X(0), P(0) and t.
 - (c) [7] Show that there is a lower limit on the uncertainties $\left[\Delta x(t)\right]\left[\Delta x(0)\right] \ge Ct$, and find C.
- 3. [15] A particle of mass *m* in one dimension is in the potential $V(x) = \begin{cases} -\alpha x & x < 0, \\ \beta x & x > 0. \end{cases}$ Using the WKB method, estimate the energy of the *n*'th eigenstate.
- 4. [15] A particle of mass *m* lies in the potential $V(x) = B|x|^3$. Estimate the energy of the ground state energy by the variational method using the trial wave function $\psi(x) = e^{-\alpha x^2/2}$.
- 5. [15] A particle of mass *m* lies in the 2D infinite square square well with allowed region 0 < x < a and 0 < y < a. In addition, there is a small perturbation of the form $W(x, y) = \lambda \cos(\pi x/a) \cos(\pi y/a)$, where λ is small.

(a) [2] What are the exact eigenstates and energies in the limit of no perturbation, $\lambda = 0$? (b)[13] Find the ground state wave function to first order and the energy to second order in λ .

- 6. [15] An electron is trapped in a Coulomb potential of the form $V_C(\mathbf{r}) = Ar$. It is in one of the l = 1 states, so its space wave function looks like $\psi(\mathbf{r}) = R(r)Y_1^m(\theta, \phi)$ where $Y_1^m(\theta, \phi)$ is a spherical harmonic and R(r) is a radial wave function.
 - (a) [8] Given that l = 1, what are the possible values of *j*, the total angular momentum quantum number? For each of these values of *j*, work out the corresponding eigenvalue of $\mathbf{L} \cdot \mathbf{S}$.
 - (b) [7] Find the energy splitting $\Delta \varepsilon'$ between the different states you found in part (a) due to spin-orbit coupling. Since you don't know the radial wave function, you will have to leave one integral undone.

Possibly Helpful Formulas:	Pauli Matrices $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Heisenberg Picture $\frac{d}{dt}A(t) = \frac{i}{\hbar} \Big[H(t), A(t)\Big]$	1D Infinite Square Well $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$
State Operators	$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	Spin-Orbit Coupling $W_{\rm SO} = \frac{g}{4m^2c^2} \frac{1}{r} \frac{dV_c(r)}{dr} \mathbf{L} \cdot \mathbf{S}$	$E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$
$i\hbar \frac{d}{dt}\rho = [H,\rho]$	$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$r_{\rm SO} - \frac{1}{4m^2c^2} \frac{1}{r} \frac{1}{dr} L \cdot S$	Generalized Uncertainty $(\Delta a)(\Delta b) \ge \frac{1}{2} \langle i[A,B] \rangle $

Possibly Helpful Integrals:

In the equations below A is positive, and in the last equation n, m and p are positive integers.

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1}$$
$$\int_0^\infty x^n e^{-Ax^2} dx = \frac{1}{2A^{(n+1)/2}} \Gamma\left(\frac{n+1}{2}\right), \quad \Gamma(1) = \Gamma(2) = 1, \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}.$$
$$\int_0^a \sin\left(\frac{\pi nx}{a}\right) \sin\left(\frac{\pi mx}{a}\right) \cos\left(\frac{\pi px}{a}\right) dx = \frac{a}{4} \left(\delta_{n,m+p} + \delta_{m,n+p} - \delta_{p,n+m}\right).$$

Possibly Helpful Formulas:	Pauli Matrices $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Heisenberg Picture $\frac{d}{dt}A(t) = \frac{i}{\hbar} \Big[H(t), A(t)\Big]$	1D Infinite Square Well $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$
State Operators	$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	Spin-Orbit Coupling $W_{\rm SO} = \frac{g}{4m^2c^2} \frac{1}{r} \frac{dV_c(r)}{dr} \mathbf{L} \cdot \mathbf{S}$	$E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$
$i\hbar \frac{d}{dt}\rho = [H,\rho]$	$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\frac{4m^2c^2 r}{dr} dr$	Generalized Uncertainty $(\Delta a)(\Delta b) \ge \frac{1}{2} \langle i[A,B] \rangle $

Possibly Helpful Integrals:

In the equations below A is positive, and in the last equation n, m and p are positive integers.

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1}$$
$$\int_0^\infty x^n e^{-Ax^2} dx = \frac{1}{2A^{(n+1)/2}} \Gamma\left(\frac{n+1}{2}\right), \quad \Gamma(1) = \Gamma(2) = 1, \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}.$$
$$\int_0^a \sin\left(\frac{\pi nx}{a}\right) \sin\left(\frac{\pi mx}{a}\right) \cos\left(\frac{\pi px}{a}\right) dx = \frac{a}{4} \left(\delta_{n,m+p} + \delta_{m,n+p} - \delta_{p,n+m}\right).$$