Physics 742 - Graduate Quantum Mechanics 2

First Exam, Spring 2024

The value of each question is listed in square brackets at the start of the problem or part.

1. [20] A spin- $1 / 2$ particle is in the spin state $\left|\psi_{\phi}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{i \phi}}$, but the phase ϕ is randomly chosen in the range $0<\phi<\pi$. Note that the Pauli matrices σ_{i} are given at the end of the test.
(a) [7] What is the state operator ρ ? Check that the trace has the correct value.
(b) [7] What would be the expectation value of each of the three spin operators $S_{i}=\frac{1}{2} \hbar \sigma_{i}$?
(c) [6] True or false: If the Hamiltonian is $H=\omega S_{y}$, the state operator is independent of time.
2. [20] This problem should be worked entirely in terms of the Heisenberg formulation. A particle of mass m in one dimension has Hamiltonian $H=P^{2} / 2 m-F X$.
(a) [7] Find in this formalism equations for the time derivatives $\frac{d}{d t} X(t)$ and $\frac{d}{d t} P(t)$.
(b) [6] Find $P(t)$ in terms of $P(0)$ and t. Then find $X(t)$ in terms of $X(0), P(0)$ and t.
(c) [7] Show that there is a lower limit on the uncertainties $[\Delta x(t)][\Delta x(0)] \geq C t$, and find C.
3. [15] A particle of mass m in one dimension is in the potential $V(x)=\left\{\begin{array}{cc}-\alpha x & x<0, \\ \beta x & x>0 .\end{array}\right.$

Using the WKB method, estimate the energy of the n 'th eigenstate.
4. [15] A particle of mass m lies in the potential $V(x)=B|x|^{3}$. Estimate the energy of the ground state energy by the variational method using the trial wave function $\psi(x)=e^{-\alpha x^{2} / 2}$.
5. [15] A particle of mass m lies in the 2 D infinite square square well with allowed region $0<x<a$ and $0<y<a$. In addition, there is a small perturbation of the form $W(x, y)=\lambda \cos (\pi x / a) \cos (\pi y / a)$, where λ is small.
(a) [2] What are the exact eigenstates and energies in the limit of no perturbation, $\lambda=0$? (b)[13] Find the ground state wave function to first order and the energy to second order in λ.
6. [15] An electron is trapped in a Coulomb potential of the form $V_{C}(\mathbf{r})=A r$. It is in one of the $l=1$ states, so its space wave function looks like $\psi(\mathbf{r})=R(r) Y_{1}^{m}(\theta, \phi)$ where $Y_{1}^{m}(\theta, \phi)$ is a spherical harmonic and $R(r)$ is a radial wave function.
(a) [8] Given that $l=1$, what are the possible values of j, the total angular momentum quantum number? For each of these values of j, work out the corresponding eigenvalue of $\mathbf{L} \cdot \mathbf{S}$.
(b) [7] Find the energy splitting $\Delta \varepsilon^{\prime}$ between the different states you found in part (a) due to spin-orbit coupling. Since you don't know the radial wave function, you will have to leave one integral undone.

Possibly
Helpful
Formulas:

State
Operators

$i \hbar \frac{d}{d t} \rho=[H, \rho]$

Pauli Matrices	Heisenberg Picture	1D Infinite Square Well
$\sigma_{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$	$\frac{d}{d t} A(t)=\frac{i}{\hbar}[H(t), A(t)]$	$\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n x}{a}\right)$
$\left.\begin{array}{c}\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \\ \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\end{array} \quad \begin{array}{c}\text { Spin-Orbit Coupling } \\ \text { SO }\end{array}\right) \frac{g}{4 m^{2} c^{2}} \frac{1}{r} \frac{d V_{c}(r)}{d r} \mathbf{L} \cdot \mathbf{S}$	$E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m a^{2}}$	
		Generalized Uncertainty $(\Delta a)(\Delta b) \geq \frac{1}{2}\|\langle i[A, B]\rangle\|$

Possibly Helpful Integrals:

In the equations below A is positive, and in the last equation n, m and p are positive integers.

$$
\begin{gathered}
\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1} \\
\int_{0}^{\infty} x^{n} e^{-A x^{2}} d x=\frac{1}{2 A^{(n+1) / 2}} \Gamma\left(\frac{n+1}{2}\right), \quad \Gamma(1)=\Gamma(2)=1, \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{\pi} . \\
\int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m x}{a}\right) \cos \left(\frac{\pi p x}{a}\right) d x=\frac{a}{4}\left(\delta_{n, m+p}+\delta_{m, n+p}-\delta_{p, n+m}\right) .
\end{gathered}
$$

Possibly Helpful Formulas:	Pauli Matrices$\begin{aligned} & \sigma_{x}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right) \\ & \sigma_{y}=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \\ & \sigma_{z}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$	Heisenberg Picture	1D Infinite Square Well$\begin{gathered} \psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n x}{a}\right) \\ E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m a^{2}} \end{gathered}$
		$\frac{d}{d t} A(t)=\frac{i}{\hbar}[H(t), A(t)]$	
State Operators		Spin-Orbit Coupling $W_{0}=g \quad 1 d V_{c}(r)$	
$i \hbar \frac{d}{d t} \rho=[H, \rho]$		$c^{2} \frac{1}{r} \frac{d r}{}$	Generalized Uncertainty $(\Delta a)(\Delta b) \geq \frac{1}{2}\|\langle i[A, B]\rangle\|$

Possibly Helpful Integrals:

In the equations below A is positive, and in the last equation n, m and p are positive integers.

$$
\begin{gathered}
\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1} \\
\int_{0}^{\infty} x^{n} e^{-A x^{2}} d x=\frac{1}{2 A^{(n+1) / 2}} \Gamma\left(\frac{n+1}{2}\right), \quad \Gamma(1)=\Gamma(2)=1, \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{\pi} . \\
\int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m x}{a}\right) \cos \left(\frac{\pi p x}{a}\right) d x=\frac{a}{4}\left(\delta_{n, m+p}+\delta_{m, n+p}-\delta_{p, n+m}\right) .
\end{gathered}
$$

