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Abstract

We present a complete working example of using regional climate model projections

to estimate the changing risks of temperature index-based insurance products defined

for a series of locations in California. This region is a major agricultural producer. The

climate model projections are an ensemble of three regional climate models obtained

from the North American Regional Climate Change Assessment Program. Hindcasts

for the period of 1971-2000 are compared to historical observed temperature data for

bias and variance corrections. Adjusted future model projections are used to estimate

distributions of cooling degree days for 2041-2070, which are then used to estimate risk

measures for index-based insurance products defined for cooling degree day indices.
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1 Introduction

Index-based insurance specifies payments to the policyholder based on the settlement value of some external

index. The contract specifies the index, the mathematical function which describes payments for all possible

settlement values of the index, and the time period over which the insurance is in force. Whereas traditional

insurance compensates policyholders based on the actual realized loss from a covered peril, index-based

insurance compensates policyholders based on an external trigger, regardless of the actual realized loss. The

advantages of this approach include reduced administrative costs for the insurer – moral and morale hazards

are virtually eliminated as the index is objectively verified and beyond anyone’s control or manipulation,

and there is no need to confirm the actual policyholder losses. Payments can be issued remotely and quickly.

Index-based insurance has been widely touted in developing regions underserved by traditional insurance

markets (see, for example the review papers by Carter et al. (2014) and Collier et al. (2009), examples

from Barnett and Mahul (2007) and Alderman and Haque (2007), or the Global Index Insurance Facility at

https://www.indexinsuranceforum.org/).

As an example, consider the Livelihood Protection Plan from the Munich Climate Insurance Initiative

((MCII), 2013). This index-based insurance specified payments to policyholders in the Caribbean triggered

when the maximum daily wind speed exceeded a high threshold, or when the total rainfall exceeded some

high threshold. The motivation was to issue payments for severe weather events, likely to cause physical

damage and economic distruption. Rainfall was monitored by the Danish Hydrological Institute, and wind

speeds were monitored by the Caribbean Catastrophe Risk Insurance. Policyholders were sent SMS text

messages to their mobile phones warning them of upcoming storms which may trigger the insurance, and

after a triggering event they were sent notice and payment without any loss adjustment or claims verifcation.

Other index-based insurance products have been defined with triggers based on precipitation extremes (Fis-

cher et al., 2012), the normalized vegetation depth index (NDVI, a satellite-based measurement of vegetation

which correlates with crop risk (Turvey and Mclaurin, 2012)), temperature (Turvey, 2005), a temperature-

humidity index designed to correlate with dairy production risk (Deng et al., 2007), and more complex

indices meant to capture livestock risk (Chantarat et al., 2013).

To price index-based insurance accurately, one needs an accurate estimate of the distribution function of

payments, but these are mathematically determined for all given index-values, and so the distribution of

the index variable fully specifies the distribution of the payments. The focus of this paper is on weather

index-based insurance products, which includes all of the examples mentioned above, and so a starting point

for actuarial work is the estimation of the index distribution. This paper will explore risk measures for
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a temperature index-based insurance product in Fresno, CA. Historical data on daily temperature can be

obtained from publicly available sources (see the National Centers for Environmental Information (NCEI) for

data in the US, https://www.ncei.noaa.gov/). When using a few decades worth of historical temperature

data to estimate the distribution of temperature in the near future, one must ask (Q1) if the distribution

of temperatures has been stationary over this time period – that is, can we regard all historical data as

being draws from the same distribution of daily temperatures, or is it possible that the distribution has

been changing over time? Furthermore, if the period of interest for the index-based insurance product is far

enough in the future, one must also ask (Q2) if the distribution in the future will match the distribution

being estimated in the present, or if instead further adjustments will be needed.

Historical data show that for many weather variables, distributions have not been stationary over the past

few decades. Consider Figure 1 from the National Centers for Environmental Information. This image shows

global mean temperature anomolies temperature from 1880 - present (a temperature anomaly is a year’s mean

temperature minus the average taken over 1900 - 2000). As is strikingly evident, average temperatures have

been trending up over the past few decades, and therefore the mean of the distribution of temperature has

been trending up. For an excellent visualization of shifting temperature distributions, see also Hansen et al.

(2010) and Hansen et al. (2012). The Actuaries’ Climate Index (ACI, http://actuariesclimateindex.

org/home/) similarly looks at historical data to identify shifts in climate. Revisiting (Q1) from the previous

paragraph, we conclude that the distribution of global mean temperatures has not been stationary, and

therefore it makes sense to consider adjustments to past data over several decades.

Investigation of (Q2) is the primary focus of this paper. To ask question (Q2) is to ask what scientists project

forward for climate trends, and how those projections could be utilized by actuaries. These projections come

from climate models, which are high quality computer simulations of the Earth’s climate which can be run

forward in time. Full discussion of global and regional climate models is an extensive topic beyond this paper,

but for more on the basics of the underlying physical science, climate model construction and primary results,

see the Society of Actuaries white paper Erhardt and Von Burg (2018), or the Intergovernmental Panel on

Climate Change (IPCC, http://www.ipcc.ch/) reports (Pachauri et al., 2014).

In this paper, we use an ensemble of three regional climate models from the North American Climate

Change Assessment Program (NARCCAP, http://www.narccap.ucar.edu/, Mearns et al. (2007)) to es-

timate changing risks of temperature index-based insurance in central California. We first describe how

to obtain, visualize, and manipulate NARCCAP regional climate model output. Comparing hindcasts of

climate model output to historical data, we demonstrate the need for bias and variance correction, and next

show how these corrections are applied to future climate model projections to estimate future distributions
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Figure 1: Global average temperature anomalies (land and ocean) from 1880-2016, obtained from the

National Centers for Environmental Information (https://www.ncdc.noaa.gov/cag/). Anomalies are defined

as a year’s mean surface temperature minus the average temperature taken from 1900 - 2000. Years shown

in red are warmer than the 20th average, whereas years shown in blue are cooler.

of temperatures. From these, we compute the temperature index for a hypothetical index-based insurance

product following Fleege et al. (2004). This product will make payments based on an aggregate temperature

index computed from May 1 through July 31, in Fresno CA. We end by demonstrating how risk measures

of this increase as a result of a warmer projected climate.

2 Exploratory Data Analysis

2.1 Historical Data

We obtained historical daily temperature for 24 locations in California for the period Jan 1, 1971 through

Dec 31, 2000. This time period was selected to match the available hindcast climate model data. The

loctions are shown in Figure 2, and were chosen to span the Central Valley region with the requirement that

each have less than 10% missing values. There are also several cities located on the west coast and in the

inland mountains, for comparison. These data were obtained from the National Centers for Environmental

Information (NCEI) Climate Data Online (CDO, https://www.ncdc.noaa.gov/cdo-web/). This portal

provides free access to the National Climate Data Center (NCDC) archive of global historical weather and

climate data.
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Summary statistics of the twenty-four cities are provided in Table 1. Figure 3 shows kernel density estimates

of the 24 cities by season. In this paper we will refer to winter as “December/January/February” (DJF),

each subsequent season as exactly three months (MAM, JJA, SON). The three cities shown in heavy black

lines are Fresno, Huntington Lake and Los Angeles. Histograms and qqplots of historical temperature in

May, June and July (MJJ) are shown in figure 4.

Figure 2: Study region of the 24 cities in California. Each city has less than 10% missing values for the

study period January 1, 1971 through December 31, 2000. Cities cover the major regions of the state,

including the coast, central valley, desert south, and high mountain regions.
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City % missing days Mean Std Dev Skewness Kurtosis
Bakersfield 0.00 65.5 14.0 0.05 1.99
Bishop 0.01 56.0 14.9 -0.04 1.96
Blythe 6.00 72.2 15.2 0.01 1.79
Bridgeport 5.70 43.5 14.3 -0.30 2.51
Burbank Valley 1.51 64.7 9.4 0.08 2.34
Daggett 0.28 68.0 15.6 0.02 1.87
Death Valley 0.43 76.4 18.2 -0.02 1.79
Desert Resorts 1.17 72.3 14.2 -0.04 1.88
Fresno 0.00 63.8 13.9 0.03 1.93
Huntington Lake 3.59 45.9 11.6 -0.01 2.27
Los Angeles 0.00 63.3 6.4 0.09 2.82
Merced 4.01 62.0 12.8 0.01 2
Modesto 1.01 62.4 12.2 -0.03 2.11
Needles 1.94 73.7 16.3 0.03 1.79
Paso Robles 0.60 59.4 10.4 0.08 2.25
Red Bluff 6.91 63.2 14.1 0.12 1.97
Sacramento 0.18 61.1 11.9 -0.02 2.09
San Diego 0.00 64.4 6.4 0.13 2.7
San Francisco 0.00 57.6 6.6 -0.02 2.98
Santa Barbara 8.51 59.5 6.5 0.00 2.81
Santa Maria 0.02 57.7 6.5 -0.11 2.91
Stockton 0.01 62.0 12.6 -0.01 2.08
Torrance 0.68 63.1 6.8 0.08 2.77
Visalia 1.16 63.2 13.2 -0.06 1.95

Table 1: Summary statistics for the 24 locations in the study. Missing data ranges from 0.00% to 8.51% in

Santa Barbara.
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Figure 3: Kernel density plots for each city in each season in a “winter - spring - summer - fall” order.

Three black lines in each season plot show the three selected cities, and other gray lines indicates other cities.
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Figure 4: Top: histograms of historical temperatures of Fresno, Huntington Lake and Los Angeles in MJJ,

demonstrating a mild skew. Bottom: qqplots of historical temperatures of Fresno, Huntington Lake and Los

Angeles in MJJ.
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2.2 Regional Climate Model Data

We obtained regional climate model (RCM) output from the North American Regional Climate Change

Assessment Program. An introduction and overview of this program can be found in Mearns et al. (2005)

and Mearns et al. (2007). NARCCAP is an international program to produce climate projection outputs

for North America for the years 2041 to 2070 from multiple regional climate models (RCMs) nested within

multiple general circulation models (GCMs). Background about RCMs and GCMs can be found in Music

et al. (2015) and Eagleson (2011), respectively, and for an actuarial perspective see Erhardt and Von Burg

(2018). What is relevant for this paper is that RCMs are dynamically downscaled climate models designed

to allow for the study of more localized, regional consequences of projected climate change. Climate model

output from NARCCAP is available for two time periods, a hindcast period from 1971 - 2000 and a future

period from 2041-2070. RCM output can be thought of as a cube, with latitude and longitude forming 2

dimentions, and time the third. Temperature is obtained every 3 hours, so for each year we extracted a cube

of data with dimensions 16×33×2920. The latitude and longitude coordinates were chosen to include those

forming a rectangle covering California, and can best be seen in Figure 5.

Due to differences in climate models, we chose an ensemble of three different GCM/RCM combinations

to explore a range of models. This ensemble contains (1) the Canadian Regional Climate Model nested

within the Community Climate System Model (CRCM-CCSM), the (2) Weather Forecasting Research Group

model nested within the Third Generation Coupled Global Climate Model (WRFG-CGCM3); and (3) the

Hadley Regional Model 3 nested within the Hadley Centre Coupled Model, version 3 (HRM3-HadCM3).

All three GCMs were run under the SRES A2 emissions scenario (see http://www.narccap.ucar.edu/

about/emissions.html or Nakicenovic et al. (2000) for more detail). We will highlight results from the

CRCM-CCSM (Caya and Laprise, 1999), (Gent et al., 2011), but the others are qualitatively similar.

2.3 Cooling Degree Days

The index-based insurance product we will consider is triggered by an index measured in cumulative cooling

degree days, so here we define this index. A degree day is a measure of the demand for heating or cooling.

Cooling degree days (CDDs), which we discuss in this paper, measure the excess temperature above a certain

threshold. Here we use the common 65 degrees Fahrenheit, in which case for a single day d, a CDD is defined

as

CDDd = max(0, T̄d − 65),

where T̄d is the average of daily maximum temperature and minimum temperature measured in degrees
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Fahrenheit. We can sum CDDs over some time period, denoted as D, and call this sum the cumulative

cooling degree days (cCDDs) for a place/location in time D, defined as

cCDD =
∑
d∈D

CDDd =
∑
d∈D

max(0, T̄d − 65). (1)

cCDDs are a measure of overall temperature excess above 65 degrees Fahrenheit, without regard to precisely

how or when the temperature exceeded the threshold. They serve as a convenient proxy for the overall

warmth of a season, and are widely used by utility companies to measure demand for heating and cooling

energy, and by agricultural producers to measure the warmth of a particular season.

Erhardt (2015) quantified the projected positive trends in North American cCDDs in the mid-twenty-first-

century using NARCCAP data. Here we will explore changes in the overall distribution of cCDDs comparing

the future period 2041-2070 to the current period 1971-2000 (these names follow NARCCAP convention).

Following the example in Fleege et al. (2004), we define D as the period from May 1 to July 31, for both

current and future years. We computed the annual cCDDs for each grid cell by summing the daily CDDs

over the period of May 1 through July 31. Figure 5 shows the average of these cCDDs taken over the 30

year current period (left panel) and future period (center panel). Owing to warmer projected temperatures

in the future, the future period shows higher average cCDDs, best seen by the third panel which shows the

difference between the other two panels. For every grid cell in the study region, the cCDDs are projected to

increase in the CRCM-CCSM model. This projected increase is largest in the southeast and central valley

of CA, with only mild increases projected for the Pacific coast.

Figure 5: The left and center graphs are cCDDs for current and future time periods for California, respec-

tively. The right graph shows the difference for cCDDs (future cCDDs minus current cCDDs).

Figure 6 shows a pointwise 95% confidence surface for the projected increase in cCDDs, with the lower bound
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(left panel) and upper bound (right panel) computed simply as the difference ± 2 standard errors of the

difference. Even after incorporating uncertainty in the two estimates, the lower bound is everywhere greater

than zero.

Figure 6: These two panels show the pointwise 95% confidence surface for the projected change in cCDDs

from the CCSM-CRCM model over California. The lower bound (left panel) is computed as the mean minus

2 standard errors, and the upper bound (right panel) is computed as the mean plus two standard errors.

Figure 7: A line chart of current and future average annual cCDDs for all grid cells. The left part is

showing average of annual cCDDs from year 1971 to year 2000, and the right part is showing average of

annual cCDDs from year 2041 to year 2070.

To further visualize the shift in cCDDS, Figure 7 shows a line chart of the average annual cCDDs for all grid

cells, for both current and future time periods. In this chart, it is easy to tell that annual cCDDs are higher
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in the future, and therefore any payments in an index-based insurance product based on cCDDs would be

similarly impacted.

3 Downscaling

3.1 Introduction to Statistical Downscaling

Consider the three cities of Fresno, Huntingdon Lake, and Los Angeles, and consider only the 3 grid cells

which contain each. Figure 8 shows distributions for observed historical daily tmperatures (solid line),

1971-2000 hindcast RCM output for daily temperatures (dashed line), and 2041-2070 projections of daily

temperatures (dot-dash line). It is clear that the means and variances of the hindcast (dashed) and observed

data (solid) do not match. It is also clear that distributions of temperature for the future period (dot-dash)

have noticeably shifted to the right of the hindcast distributions (dashed).

Figure 8: Density plots for historical (solid line), current (dashed line), and future (dot-dashed line)

temperature data before downscaling.

Figure 8 demonstrates that the RCM output show climate change trends as the distributions have shifted

to the right, but it also shows the need for a bias and variance correction as hindcasted distributions do not

match observed climate data. To help remove some of this bias, we match the means and variances of these

two distributions. We then apply those same bias and variance corrections to output from the RCM in the

future period. The result is what we will refer to as downscaled future temperatures.
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For each of the 24 cities and for each regional climate model, we compute a bias correction ψ which measures

the mismatch in mean temperatures for hindcast and historical observations, along with a variance correction

φ which measures the relationship between the variability of daily temperatures for the two periods. That is,

we compute the necessary additive and multiplicative constants needed to match the means and variances of

the observed and hindcast data. Following Algorithm 1, we apply those same bias and variance corrections

to raw NARCCAP future projections to obtain downscaled future projected temperatures Tfuture,t. More

detail is provided in the appendices. This correction would eliminate biases in the mean and variance that

are preserved throughout time by regional climate models.

Algorithm 1 Simple downscaling
See Appendix for all variable names.

1: Compute ψ = T̄current − T̄historical
φ = σhistorical/σcurrent

2: Tcurrent,t = (Tcurrent,t − T̄current)× φ+ T̄current − ψ,
Tfuture,t = (Tfuture,t − T̄future)× φ+ T̄future − ψ.

3.2 Downscaling Results

After applying the statistical downscaling algorithm 1, Figure 9 (left column) confirms that the bias and

variance corrections have matched up downscaled hindcasts and observed distributions. The right column

further shows that corrected future distributions are still noticeably shifted to the right as a result of a warmer

climate. Figure 10 highlights the shifts from current to future distributions. Tables 2 and 3 summarize some

of the statistics from this downscaling procedure. Finally, Figure 11 helps visualize the shifts in mean for

each of the three cities, and shows a statistically significant increase after taking year to year variability into

consideration. Taken together, these Figures and Tables demonstrate the motivation for and success of the

downscaling adjustment.
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Figure 9: Comparison plots for non-downscaled (dashed line), downscaled (soild line) and historical (dot-

dashed line) temperatures in each city. Left panels show the current time period, and right panels show

the future time period. The downscaler matches up distributions for the current, and after applying the

downscaling on the future, it’s clear that the downscaled future distributions are still shifted to the right

compared to historical, which is a result of projected warming due to climate change.
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Figure 10: Comparison plots for downscaled current and future temperature for each city. Downscaled

temperature in future tends to be higher for each selected city.

Mean Std Dev 10th Quantile 90th Quantile

F HL LA F HL LA F HL LA F HL LA

Current, Non-
downscaled

72.4 76.5 66.8 9.9 10.6 3.1 58.9 84.9 62.1 89.7 63.0 71.1

Current,
Downscaled

76.1 54.5 66.4 8.2 8.8 4.1 64.9 86.5 42.6 65.5 61.4 72.1

Future, Non-
downscaled

77.0 81.2 69.4 10.5 11.5 3.4 62.8 90.1 65.5 95.1 65.3 73.9

Future, Down-
scaled

80.8 59.3 69.1 8.7 9.6 4.4 68.9 91.6 46.2 70.9 63.5 75.0

Table 2: This table provides mean, standard deviation, 10th and 90th quantile for both non-downscaled

and downscaled temperature for Fresno (F), Huntingdon Lake (HL) and Los Angeles (LA). This table shows

huge difference in distribution of non-downscaled and downscaled temperature.
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Variable Fresno Huntington Lake Los Angeles
ψ 0.73 3.86 0.91
φ 0.78 0.84 1.17

Table 3: This table provides bias correction and variance correction for Fresno, Huntington Lake and Los

Angeles used in downscaling progress. The variance correction shrinks variance for Fresno and Huntington,

but enlarges it for LA.

Figure 11: The circles, squares and triangles represent Fresno, Huntington Lake and Los Angeles, respec-

tively. Current downscaled temperature stay on the left, and future downscaled temperature stay on the

right. For each city and each time period, its mean downscaled temperature are drew along with a 95%

confidence interval of this mean. From this figure, one can tell future annual cCDD in each city tends to be

higher than current.
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4 Application

Here we describe a hypothetical index-based insurance product that makes payments whenever the cCDD

index from May 1 - July 31 exceeds some high threshold. This case is inspired by Fleege et al. (2004), and

is meant to mimic an insurance product which provides financial relief to unusually hot weather during the

critical growing in central California. Other papers describing the construction of similar products include

Zeng (2000), Alaton et al. (2002), and Deng et al. (2007). Specifically, the payment we will consider is

Payment =

 0 cCDD < cCDDthreshold,

k(cCDD − cCDDthreshold) cCDD ≥ cCDDthreshold

(2)

where cCDD is the index settlement value, and cCDDthreshold is the value which first triggers payment.

For each degree that cCDD exceeds the threshold cCDDthreshold, a payment of k is issued.

We will consider two simple risk measures for payments. First, the Value at risk (VaR) at probability level p

is defined as the pth percentile of the payment. The usual levels of VaR are p = 0.95 and p = 0.99. Second,

we will consider the Conditional tail expectation (CTE) as a risk measure that quantifies the expected value

of the loss, given that an event outside a given probability level has occurred. Mathematically, the CTE is

defined as

CTEp = E(P |P > Pp), (3)

where 1− p is the risk level, P is annual payment, Pp is the pth percentile of P .

We show risk measures for two different settings. In the first, we use only historical temperature data from

January 1, 1971 through April 30, 2000 to build a statistical model which is then used to predict forward 92

days. These 92 days of predictions are used to compute the index value, which is in turn used to compute

the payment. Using bootstrapping with our fitted model, we obtain 10,000 projected paths of temperature

and 10,000 associated payments.

In the second setting, our goal is to produce 10,000 payments for the index-based insurance product for the

period of May 1 through July 31, not under the climate of the year 2000 but rather under the climate described

by one of the regional climate models from 2041-2070. Comparing this second setting to the first setting

allows a direct comparison of changes in payments or risk measures which are due to the changed climate

only. To obtain the predictive distribution of payments under this changed climate, we first apply inverse

bias and variance corrections map the temperatures to the “current” distributions of each RCM (Algorithm

1, with all parameters shown in Table 5), and then apply the differences in means from “current” 1971-2000
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to “future” 2041-2070 for each RCM (demonstrated in Figure 10, with all parameters shown in Table 6).

The end result of these two mappings is to produce a distribution of 10,000 payments under the hypothetical

future climate described by each of the three RCMs.

Here we describe the construction of the model used in the first setting to form a predictive distribution for

daily temperatures for the 92 day period from May 1, 2000 through July 31, 2000. We obtained historical

daily temperatures in Fresno, CA from Jan 1, 1971 to Apr 30, 2000. After exploratory data anlysis which

demonstrates the periodic structure, linear trend, and time-dependent residual structure, we fit a linear

model with Fourier terms and ARMA(3,3) residuals as:

Td = c0+c1d+α1sin

(
2πd

365

)
+β1cos

(
2πd

365

)
+α2sin

(
4πd

365

)
+β2cos

(
4πd

365

)
+α3sin

(
6πd

365

)
+β3cos

(
6πd

365

)
+wd,

where Td is temperature for day d, c0, c1, α1, α2, α3, β1, β2, β3 are coefficients, and error term wd ∼ ARMA(3, 3).

The number of periodic terms in the model was determined using BIC. All parameters were estimated using

maximum likelihood estimation/ordinary least squares.

Call the full paramater vector from the fitted model θ̂ (not shown). This model with θ̂ was used to to predict

92 days ahead, i.e. predicted daily temperatures in May 1 to July 31, and from these the cCDD index was

computed. To obtain a distribution of predicted index values and payments from our model, one which

incorporates parameter uncertainty of our model, we employed bootstrapping. The residuals from our fitted

model were sampled with replacement to obtain ε̂∗, added to the fitted values to obtain a bootstrapped

dataset y∗ = ŷ + ε̂∗, and to this new sample a new model was fit which yielded parameter estimate θ̂∗. We

then used this new fitted model to project forward 92 days and obtain another predicted index value. This

procedure was repeated 10,000 times, and the result was a predictive distribution of 10,000 cCDD settled

index values. From these, we computed the 75th and 95th percentiles as 1155 and 1170, and used them as

thresholds along with k = 1 in the pricing formula in Equation 2 for the index-based insurance product.

Therefore, our two payments we consider are

Payment1 = max(0, CDDd − 1155) (4)

Payment2 = max(0, CDDd − 1170). (5)

We computed the hypothetical 10,000 payments under each threshold, and then computed the VaR and

CTEs at the p = 0.95 and p = 0.99 levels from these distributiuons. These risk measures are shown under
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the columns labelled Current in Table 4.

Next, we re-computed all quantities of the the predictive distribution of payments under the hypothetical

future climate described by each regional climate model. This required two mappings, from “observed” to

“current”, and then from “current” to “future”. The mapping from observed to current is simply the inverse

of the bias and variance correction described in Algorithm 1. The specific parameters used are shown in

Table 5. The mapping from “current” to “future” is simply the adjustment to the mean and variance as

shown in Figure 10 for CRCM-CCSM. For the other RCMs, the adjustment parameters are shown in Table 6.

After making these adjustments to the 10,000 bootstrapped temperature realizations, we computed payments

using equations 4 and ?? and then computed the risk measures VaR and CTE for these distributions. Results

are shown in Table 4, and distributions of payments can be seen in Figure 12. As expected, risk measures

are sharply higher, since higher average temperatures have pushed the right tail of cCDD distribution far to

the right, piercing into higher payments.

Figure 12: These are density of payments under different thresholds. The left panel shows payments

when threshold is 1155, and the right panel shows payments when threshold is 1170. The red line shows

density of payments under CRCM-CCSM model projection; the blue line shows density of payments under

WRFG-CGCM3 model projection; the yellow line shows density of payments under HRM3-HadCM3 model

projection; the black line shows mixed density of payments which puts 1/3 weights on each of these three

models.
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Payment 1 (1155) Payment 2 (1170)
Current CRCM-

CCSM
WRFG-
CGCM3

HRM3-
HaDCM3

Current CRCM-
CCSM

WRFG-
CGCM3

HRM3-
HaDCM3

95% VaR 14.22 502.81 316.81 465.36 0 487.81 301.81 450.36
99% VaR 24.28 512.93 326.94 475.48 9.28 497.93 311.94 460.48
95% CTE 20.17 508.75 322.75 471.3 20.77 493.75 307.75 456.3
99% CTE 28.46 517.11 331.12 479.66 28.46 502.11 316.12 464.66

Table 4: This table compares future payments under three different RCM-GCM models. The first payment

has threshold 1155, and the second one has threshold 1170. First two rows show VaR, and last two rows

show CTE. The “current” columns show risk measures for predictions of May.1st to July.31st, 2000, and

other columns show risk measures for future payments calculated from corresponding models.

CRCM-
CCSM

WRFG-
CGCM3

HRM3-
HaDCM3

Bias Correction

Spring -9.73 -4.35 -3.92
Summer 0.46 -8.86 9.2
Autumn -6.76 -1.87 2.46
Winter -8.16 -1.99 -1.05

Variance Correction

Spring 0.84 1.03 0.88
Summer 0.8 0.92 0.8
Autumn 0.78 1.07 0.81
Winter 0.83 0.81 0.97

Table 5: This table shows downscaling parameters used to map historical cCDDs to current model cCDDs

for different models and different seasons. The first four rows are bias correction parameters for three models,

and last four rows are variance correction parameters for the models. From bias correction parameters, we

can tell all three models project 3 to 10 degrees different than true temperature. In spring and winter, the

models project higher temperatures, and in summer, the models project lower temperatures. In autumn,

CRCM-CCSM and WRFG-CGCM3 model project higher temperatures, and HRM3-HaDCM3 projects lower

temperatures.
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CRCM-
CCSM

WRFG-
CGCM3

HRM3-
HaDCM3

Bias Correction

Spring -3.62 -2.69 -3.89
Summer -6.17 -3.59 -5.42
Autumn -4.3 -3.74 -4.96
Winter -3.63 -3.41 -3.74

Variance Correction

Spring 1.02 1.02 1.07
Summer 1.01 0.96 1.05
Autumn 0.99 1.03 1.05
Winter 0.95 1.02 0.94

Table 6: This table shows downscaling parameters used to map downscaled current temperature and

downscaled future temperature. After getting bias correction, we can adjust daily temperatures, and regard

them as future temperatures in 2041-2070. Then we can use the adjusted temperatures to compute cCDDs

and corresponding payments. From the table, we can also notice downscaled future temperature is about 2

to 4 degrees higher than current, which results in increase of payments.
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5 Discussion

In this paper, we carefully documented how to obtain, visualize, and utilize both historical data as well as

regional climate projections for the purposes of exploring shifts in distributions over time. We documented

the known issue of bias and variance in regional climate models by comparing RCM hindcasts to observed

temperatures for the same period, and showed how one can define bias and variance corrections to produce

statistically downscaled future climate model projections. We defined an ensemble of multiple regional

climate models, and showed how actuaries can explore projected consequences of changes across an ensemble.

The primary purpose of this paper is to give actuaries a working example of all of these issues. All code for

this paper was written in R, and is freely obtained at http://users.wfu.edu/erhardrj/.

Working with climate model output and environmental data may well require that actuaries look to resources

beyond those commonly encountered to build a better foundation in climate and environmental risks. Erhardt

(2017) contains a summary of a wide range of datasets, background climate literacy books, and examples

of measuring and managing climate risks within the insurance industry. IPCC summaries are also excellent

sources to build background climate literacy.

Although this paper focused on temperature variables in climate models, other variables in RCMs which

may be of interest to actuaries include wind speed and precipitation. Precipitation is zero-inflated, and

wind speeds are strictly positive and more heavily right-skewed than temperature data. These may alter the

specific choice for a bias and variance correcting algorithm, however the overall procedure described in this

paper would still apply.

The precise changes in risk measures that were documented in the hypothetical index-based insurance are

not the primary conclusions of the research. Indeed, the regional climate models considered here were all run

under the RCP 8.5 carbon emissions scenario. This is the most pessimistic scenario considered by the IPCC,

and there are other more modest scenarios for anthropogenic carbon emissions (namely, RCM 2.6, 4.5, and

6). Unfortunately, NARCCAP is only run under RCP 8.5, and this therefore is a limitation. However, as

the number and quality of regional climate models grows, actuaries should increasingly be able to identify

regional climate models which best suit their needs. The techniques described in this paper should help them

develop algorithms to utilize those projections to continue the precise measure and management of risks.
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A Appendices

Table A shows the names of the variables used in downscaling algorithm.

Variable Explanation

Thistorical,t Re-stated historical temperature in year t

Tcurrent,t Re-stated current temperature in year t

Tfuture,t Re-stated future temperature in year t

T̄historical Average of re-stated historical temperature

T̄current Average of re-stated current temperature

T̄future Average of re-stated future temperature

Tcurrent,t Downscaled current temperature before re-trending

Tfuture,t Downscaled future temperature before re-trending

σhistorical Standard deviation of re-stated historical temperature

σcurrent Standard deviation of re-stated current temperature

ψ Bias correction

φ Variance correction

A.1 Re-stating and Re-trending Algorithms

A.1.1 Re-stating

Algorithm 2 Re-stating
Variables:
T : temperature before re-stating
Yt: year t
Y : base year
T̃ : re-stated temperature
β̂: linear coefficient
ε̂: fitting error

1: Fit linear models:
T = β̂Y + ε̂

2: T̃ = T + β̂(Y − Yt)
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A.1.2 Re-trending

Algorithm 3 Re-trending
Variables:
T : downscaled temperature
Yt: year t
Y : base year
T̃ : re-trended downscaled temperature
β̂: linear coefficient

1: T̃ = T − β̂(Y − Yt)
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