Homework 2

Numerical Linear Algebra

September 9, 2017

1 Problems for everybody

1. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$.

- a) Prove that $\langle \vec{u} + \vec{v}, \vec{u} \vec{v} \rangle = \|\vec{u}\|^2 \|\vec{v}\|^2$.
- b) Prove that if \vec{u} and \vec{v} have the same norm, then $\vec{u} + \vec{v}$ is orthogonal to $\vec{u} \vec{v}$.
- c) Prove that the diagonals of a rhombus are orthogonal to each other.
- 2. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Prove the **parallelogram law:**

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\left(\|\vec{u}\|^2 + \|\vec{v}\|^2\right).$$

- 3. Suppose $A \in \mathbb{R}^{n \times n}$ satisfies $||A||_2 \leq 1$. Prove that $A \sqrt{2}I$ is invertible.
- 4. Let $1 \leq p \leq \infty$. Suppose $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with diagonal entries $d_1, \ldots, d_n \in \mathbb{R}$. Prove that

$$||D||_p = \max_{1 \le i \le n} |d_i|_{i \le j}$$

Hint: One way to do this problem is to show that $\max_{1 \le i \le n} |d_i|$ is both an upper *and* lower bound for $||D||_p$.

5. Problems 2.1, 2.2, 2.6, 3.2, 3.3

2 Problems for mathematics/statistics graduate students

1. Problems 2.3, 2.4, 2.5