## Homework 2

Numerical Linear Algebra
September 9, 2017

## 1 Problems for everybody

1. Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$.
a) Prove that $\langle\vec{u}+\vec{v}, \vec{u}-\vec{v}\rangle=\|\vec{u}\|^{2}-\|\vec{v}\|^{2}$.
b) Prove that if $\vec{u}$ and $\vec{v}$ have the same norm, then $\vec{u}+\vec{v}$ is orthogonal to $\vec{u}-\vec{v}$.
c) Prove that the diagonals of a rhombus are orthogonal to each other.
2. Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Prove the parallelogram law:

$$
\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\left(\|\vec{u}\|^{2}+\|\vec{v}\|^{2}\right) .
$$

3. Suppose $A \in \mathbb{R}^{n \times n}$ satisfies $\|A\|_{2} \leq 1$. Prove that $A-\sqrt{2} I$ is invertible.
4. Let $1 \leq p \leq \infty$. Suppose $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with diagonal entries $d_{1}, \ldots, d_{n} \in \mathbb{R}$. Prove that

$$
\|D\|_{p}=\max _{1 \leq i \leq n}\left|d_{i}\right| .
$$

Hint: One way to do this problem is to show that $\max _{1 \leq i \leq n}\left|d_{i}\right|$ is both an upper and lower bound for $\|D\|_{p}$.
5. Problems 2.1, 2.2, 2.6, 3.2, 3.3

## 2 Problems for mathematics/statistics graduate students

1. Problems 2.3, 2.4, 2.5
