Homework 6

Numerical Linear Algebra
October 4, 2017

1 Problems for everybody

1. Let

$$
\vec{v}=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \text { and } H=(\operatorname{span}\{\vec{v}\})^{\perp}
$$

- Find the matrix $P_{\vec{v}}$, the orthogonal projection onto $\operatorname{span}\{\vec{v}\}$.
- Find the matrix P_{H}, the orthogonal projection onto H.
- Find Q_{H}, the unitary matrix that reflects across H.

2. Let A be an $m \times n$ matrix $(m \geq n)$ and let $A=\hat{Q} \hat{R}$ be a reduced $Q R$ factorization of A. Prove that A has full rank if and only if the diagonal entries of R are nonzero.
3. Create your own QR algorithm in Matlab based off of the Gram-Schmidt process. The code should take in an $m \times n$ matrix and output the reduced matrices \hat{Q} and \hat{R}. Submit a printed out copy of your code. Be sure to test your code!
4. Let Z be the following matrix:

$$
Z=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 7 \\
4 & 2 & 3 \\
4 & 2 & 2
\end{array}\right]
$$

- Use your code from part 2 to compute the reduced QR factorization of this matrix.
- Use Matlab's built in algorithm $Q R(Z, 0)$ to compute the reduced QR factorization of Z.
- Compare the outputs of these two algorithms and comment on any differences you see.

5. Problem 10.2.

2 Problems for MST graduate students

1. Problems 7.3, 11.1.
