Homework 7

Numerical Linear Algebra

October 13, 2017

1 Problems for everybody

1. Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Find asymptotic formulas for the number of floating point operations (flops) for the following calculations:

- $\vec{x}^{*} \vec{y}$
- $A \vec{x}$
- $A B$

2. Create a Matlab function that takes in a matrix $A \in \mathbb{R}^{n \times n}$ and outputs the inverse of A. Your code needs to use the QR algorithm as well as back substitution to find the inverse of A. Hint: To form the columns of A^{-1} remember that $A^{-1} e_{j}$ will give you the $j-t h$ column of A^{-1}. You can use this to set up an equation for the $j-t h$ column of A^{-1} which can be solved using the QR algorithm and back substitution.
3. Problem 12.3.
4. Consider the following Matlab code provided below. Show that this algorithm satisfies:

$$
\text { flops } \sim \frac{2}{3} n^{3}
$$

```
function [U,L] = HW7Prob1(A)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This code does something to a matrix.
% Inputs:
    1. A an nxn matrix.
    Outputs:
    1. L a matrix
    2. U a matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[n, ᄀ]=size(A);
U=A;
L=eye (n) ;
for k=1:n-1,
    for j=k+1:n,
        L(j,k)=U(j,k)/U(k,k);
        U(j,k:n)=U(j,k:n)-L(j,k)*U(k,k:n);
    end
end
```

5. Consider the following Matlab code provided below. Show that this algorithm satisfies:

$$
\text { flops } \sim \frac{1}{3} n^{3}
$$

```
function [R] = HW7Prob2(A)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
    This code does something to a matrix.
    Inputs:
    1. A an nxn symmetric positive definite matrix.
    Outputs:
    1. R a matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[n, ᄀ]=size(A);
R=A;
for k=1:n,
    for j=k+1:n,
        R(j,j:n)=R(j,j:n)-R(k,j:n)*R(k,j)/R(k,k);
    end
    R(k,k:n)=R(k,k:n)/sqrt(R(k,k));
end
```

6. Consider the following Matlab code provided below. Show that this algorithm satisfies:

$$
\text { flops } \sim \frac{10}{3} n^{3}
$$

```
function [H] = HW7Prob3(A)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This code does something to a matrix.
    Inputs:
    1. A an nxn matrix.
    Outputs:
    1. H a matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[n,\neg]=size(A);
H=A;
for k=1:n-2,
    x=H(k+1:n,k);
    v=sign(x(1))*norm(x)*eye(n-k,1) +x;
    v=v/norm(v);
    H(k+1:n,k:n)=H(k+1:n,k:n)-2*V* (v'*H(k+1:n,k:n));
    H(1:n,k+1:n)=H(1:n,k+1:n)-2*(H(1:n,k+1:n)*v) *v';
end
```

