Homework 9

Numerical Linear Algebra
November 3, 2017

1 Problems for everybody

1. Suppose $a, b \in \mathbb{R}$. Show that $\Lambda=\left[\begin{array}{cc}a+b i & 0 \\ 0 & a-b i\end{array}\right]$ is similar to $M=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ by diagonalizing M. How would you geometrically describe the linear transformation given by M ?
2. Prove that the eigenvalues of a projector P can have no other value than zero or one.
3. $\# 24.1, \# 24.4$.

2 MST Graduate student problems

1. The Fibonacci sequence F_{1}, F_{2}, \ldots is defined by

$$
F_{1}=1, F_{2}=1, \text { and } F_{n}=F_{n-2}+F_{n-1} \text { for } n \geq 3
$$

Define $A \in \mathbb{R}^{2 \times 2}$ by its action: $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}y \\ x+y\end{array}\right]$.

- Show that $A^{n}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}F_{n} \\ F_{n+1}\end{array}\right]$ for each positive integer n.
- Find the eigenvalues and eigenvectors of A.
- By using your solution to the previous bullet point show that

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

