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Abstract

When modeling cell division we began with six dif-
ferential equations. Using various assumptions and
reassigning variables we were able to get the system
down to two ordinary differential equations. By plot-
ting phase portraits for new system we found three
different states the model can represent. When MPF
activity is high then we are in a stable steady state
associated with metaphase arrest. With Low MPF
activity we see a stable steady state associated with
growth-controlled division. Lastly, there is a unstable
steady state associated with premature rapid division
of the cell.

Introduction

A maturation promoting factor controlling the major
events of the cell cycle is formed by the proteins in
cdc2 and cyclin (Tyson, 1991). Using John J. Tyson’s
study on “Modeling the cell division cycle: cdec and
cyclin interactions” this study will rework his ideas
and expand on the analysis of the effect of different
parameter values on the stability of the model. The
mitotic cycles in both embryonic and somatic cells
are believed to be controlled by the activity of the
maturation promoting factor, an enzyme called MPF
(Tyson, 1991). MPT is a heterodimer, compaosed of
cyclin and a protein kinase called c¢dc2. It is under-
stood that this interaction between cyclin and cdc2
generates MPF activity (see Figure 1)(T'yson, 1991).

Active MPF is known to stimulate many of the
processes that are necessary for nuclear and cell di-
vision (Moreno- Nurse, 1990; Lewis, 1990). During
the traunsition from metaphase to anaphase, the NPF
complex dissociates while the cyclin subunit quickly
degrades (Draetta et al., 1989). The cycle then re-
peats itself by the cyclin subunits combining with
cdc2 subunits again, forming an inactive MPF com-
plex which is then activated by dephosphorylation at
a certain tyrosine reside of the cdc2 subunit (Gould
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Figure 1: Simplified view of cdc2-cyclin interactions
Source: Tyson, 1991.

& Nurse, 1989). This is important because MPF dis-
sociation and cyclin proteolysis are necessary for the
completion of the mitotic cycle.

Model

In order to determine if the simplified model (see
Figure 1) is a reasonable approximation of the cell-
cycle regulatory network, Tyson frames this model
into precise mathematical equations. By investigat-
ing the properties of these equations, we can directly
see the consequences of assumptions that were made
to create the diagram in Figure I ('U'yson, 1991). T'he
kinetic equations governing the cyclin-cdc2 cycle are
shown below.
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These equations are dependent upon 10 parame-
ters (see Tuble ). Experimentally these values are
unknown so here we are demonstrating that there ex-
ists numerical values for which the model shows dy-
namical behavior that is similar of that of cell-cycle
control (Tyson 1991). In the above equations, con-
centrations [aa] and [~ P] are assumed to be constant
thus there are six time-dependent variables. These
time-dependent variables are as follows, [C2], the con-
centration of cdc2, [CP], the concentration of cde2-P,
[pM], concentration of predf PF = P—cyclin—cdc2 -
P, [M], concentration of active M PF = P — cyclin ~
cde2, [Y], the concentration of cyclin and [YP] m the
concentration of cyclin-P. The function F([M]} de-
scribes the autocatalytic feedback of active MPF on
its own production (Tyson 1991).

Table 1. Parameters and values (Source: Tyuson 1991)

Parameter Value
ki[aa)/[CT] 0.015 mig!
k2 0
k3[CT] 200 min!
ks 10-100 min'!
ks 0.018 min!
ks[~P] 0
ks 0.1-10 min’!
k7 0.6 min"!

| ks[~P] >>ky
ko >>ks

Tyson focused on two parameters in his report:
k4 which is the rate constant describing the auto-
catalytic activation of MPF by dephosphorylation of
the cde2 subunit and Ag, which is the rate contact
describing breakdown of the active cdc2-cyclin com-
plex (Tyson 1991). These two parameters control if
the system is stable or unstable as discussed later.

Using u = [M]/[CT], v = ([Y]+{pM]+[M])/[CT],
w = ([pM] + [M))/[CT] and y = [YT/[CT] we can
reduce our set of kinetic equations to the follow four
equations.

Z—t: = ky(w — u) f (u)keu ™

% = (k) [aa)/[CT)) = ka(v — w) — kgu  (8)
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Where f(u) = a + «® and a = ky /ky . Here, the
first three equations can be solved independently of
the fourth. Since w changes very rapidly compared
to v, when 0 < v < 1 then we can assume w = v.
Therefore, the cdc2-cyclin model reduces to just two
nonlinear ordinary differential equations.

%‘:m(v—u)(a-!-uz)—kau (11)
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We now have two ordinary differential equations
(see Eq.1! and 12} to represent our system and the
rest of the analysis will be done using them.

Results and Analysis

The interactions of cdc2 and cyclin (eq. 11 und 12) is
evaluated to show the three types of modes this sys-
tem operates in. Depending on the values of the pa-
rameters there is a stable steady state with high MPF
activity, a stable steady state with low MPF activity
and an unstable steady state. Below the global and
local analysis is shown and discussed in relationship
to our model. In each figure, the nullclines of our
two equations are plotted and then arrows show the
trajectory direction. Where the nullclines intersect
is where a fixed point occurs. For the local analysis
the Jacobian is evaluated at each fixed point. The
Jacobian matrix in general is shown below.

L 2kyvu — kya ~ 3k41.t2 ~ ks kija+ k.ﬂi:
1 ke 0

Steady State Behavior
High MPF activity

When k%‘[[g%!] > \/E there is high MPF activity and
the model shows a stable steady state. There is one
fixed point and the global analysis (see Figure 2)
shows a stable spiral. The local analysis gives com-
plex eigenvalues with their real part negative. Thus,



locally the fixed point is also a stable spiral. There-
fore, our control system of the cell acts in a sta-
ble state with everything spiraling towards the fixed
point when there is high MPF activity. Thus when
there is a lot of interaction between cyclin and cdc2
this state occurs.
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Figure 2: Phase portrail for egs. 11 and 12 with high
MPF actinty Source: Tyson, 1991.

Low MPF activity

Figure 3: Phase portrait for eqs. 11 and 12 with low
MPF uctivity Source: Tyson, 1991,
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When =y < ‘/% there is low MPF activity
but the model still shows a stable steady state. There

is one fixed point and the global analysis shows there
appears to be an invariant manifold (see Figure 3)
that is causing the trajectories to eventually attract
towards u,v=0. When zoomed in on the phase por-
trait you still can see the stable nature of the area
near the fixed point. Locally, the fixed point is an at-
tractor with both eigenvalues negative and real val-
ued. Thus, this state occurs when there is a small
interaction between cyclin and cdc2.

Unstable Steady State Behavior

Figure 4: Phase portrait for egs. 11 and 12 for the
unstable state with imit cycle oscillations. Source:
kilaa

Tyson, 1991.
When \/% < oICT

runs in a unstable steady state. The global analy-
sis (see Figure 4) shows a large stable spiral glob-
ally and what appears to be a small unstable spiral
near the fixed point. Using local analysis, we ob-
tained two complex eigenvalues with a positive real
part which coincides with an unstable spiral. Thus,
there is a limit cycle when the system operates un-
der these conditions. The outline of the approximate
location of the limit cycle is shown in blue (see Fig-
ure 5). We can conclude there is a limit cycle by
applying the Poincare-Bendixon Theorem. We can
construct a region in which all of the trajectories are
contained within the region. Such a region is known
as a trapping region. There is only the one fixed point
and thus no others appear in our region and we have
global flow spiraling in and local flow spiraling out

/ k
< -,%3 the control system



Figure 5: Phase portrait for eqs. 11 and 12 for the
unstable stale highlighting the limit cycle in blue.
Source: Tyson, 1991.

thus by the Poincare-Bendixon Theorem there exists
a limit cycle.

Discussion

As shown above, there are three states this model can
operate in. Each of these states are associated with
different cell function. The steady state with high
maturation promoting factor activity, is associated
with metaphase arrest in unfertilized eggs (Tyson 1991).
This means the cell stops dividing during the stage
of mitosis in which the eukaryotic cell has their chro-
mosomes at their second-most condensed and coiled
stage. Thus when there is high MPE activity and
thus high cyclin and cde¢?2 interaction we see the cells
undergo metaohase arrest.

The unstable steady state (spontaneous oscilla-
tor) is associated with rapid division within cycles
in their early embryonic stage (Tyson 1991). "This
means that the division of the cell is occurring pre-
maturely and at a very high rate.

Lastly, the stable steady sate with low MPI ac-
tivity is associated with growth-controlled division
cycles typical of non-embryonic cells (Tyson 1991).
Here, the activity of MPT is low thus there is small in-
teraction between cyclin and cdc2 leading to growth-
controlled division.

Understanding the process of cell division and what
drives it is very important because cell division is an
essential stage in the life of all cells. If we are able

to get accurate models of how cells divide in differ-
ent situations then we can better understand and test
treatment options as well as predict behaviors.

Conclusion

The analysis of models such as this one modeling cell
division will play an increasingly important role in the
understanding of cell-cycle control. Currently there
is still a lot unknown about cell division and how
to model its behavior but as our knowledge grows
our models will become more accurate and have less
assumptions associated with them.
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