Homework #1
MTH 106: Fall 2025
Instructor: John Gemmer

Directions: Solve the problems below. Then write or type your solutions clearly. Do not submit dis-
organized scratch work, only your well-written complete solutions. You should think of any scratch
work as you would think of a “rough draft”; your submission with well-organized calculations and
relevant explanations should be thought of as your “final draft”.

Problems to be completed by all students

Problem 1. Consider the system & = sin(x).
(a) Find all fixed points of the flow.
(b) At which points z does the flow have the greatest velocity to the right?
(¢) Find the flows acceleration # as a function of z.
(d) Find the points where the flow has maximum positive acceleration.

Problem 2. For the following equations sketch the vector fields on the real line, if possible find
all fixed points, classify their stability and sketch the graph of z(t) for different initial conditions.
You must include enough sketches of x(¢) to illustrate all qualitatively different solution solution
curves.

(@) ©=1-z!4.
(b) & = e *sin(z).

(c) & = e®—cos(z) (You won’t be able to find the fixed points explicitly, but you can still determine
the qualitative behavior).

Problem 3. The curves z(t) illustrated below correspond to solution curves for the differential
equation z = f(z).

(a) Sketch a one dimensional phase portrait that is consistent with this figure.
(b) Sketch a graph of f(z) that is consistent with this figure.

(c) Give a formula for f(z) that is consistent with this figure.



Problem 4. For each of parts (a)-(e), find an equation £ = f(z) with the stated properties, or if
there are no examples, explain why not.

(a) Every real number is a fixed point.

(b) Every integer is a fixed point, and there are no others.

(c) There are precisely three fixed points, and there are no others.
(d) There are precisely three fixed points, and all of them are stable.
(e) There are no fixed points.

(f) There are precisely 100 fixed points.

Problem 5. The velocity v(t) of a skydiver falling to the ground is governed by the equation
mv = mg — kv?, where m is the mass of the skydiver, g is the acceleration due to gravity, and k£ > 0
is a constant related to air resistance.

(a) Obtain the analytic solution for v(t), assuming that v(0) = 0.
(b) Find the limit of v(¢) as t — co. This limiting velocity is called the terminal velocity.

(c) Give a graphical analysis of this problem, and thereby re-derive a formula for the terminal
velocity.

Problem 6. Consider the following initial value problem
&= 1+ 2% and 2(0) = xo.
By explicitly solving this differential equation, show that there exists a finite time ¢, such that

lim z(t) = oo.
t—t,

This phenomenon is called finite time blow up.

Problem 7. Suppose X and Y are two species that reproduce exponentially fast: X = aX
and Y = bY, respectively, with initial conditions Xo,Y; > 0 and growth rates a,b > 0. Let
z(t) = X(t)/(X(t) + Y (t)) denotes X’s share of the total population.

(a) Show that @ = (a — b)z(1 — z).

(b) Show that if a > b then z is monotonically increasing and approaches 1 as t — co. What does
this result imply about the population?

(c) Show that if @ < b then x is monotonically decreasing and approaches 0 as ¢ — co. What
does this result imply about the population?

(d) What happens if a = b?



Problems to be completed by graduate students

Problem 8. A particle travels on the half line z > 0 with a velocity given by & = —z¢, where ¢ is
real and constant.

(a) Find all values of ¢ such that the origin z = 0 is a stable fixed point.

(b) Now assume that c is chosen such that = = 0 is stable. Can the particle ever reach the origin
in finite time? Specifically, how long does it take for the particle to travel fromz = 1 toz = 0,
as a function of ¢?

Problem 9. Prove that solutions to the initial value problem & = 1 + z'° blow up in finite time
starting from any initial condition. Hint: Don’t try to find an exact solution, instead compare the
solutions to those of = 1 + z2.

Problem 10. Show that the initial value problem z = z!/3, z(0) = 0, has an infinite number
of solutions. Hint: Construct a solution that stays at z = 0 until some arbitrary time ¢y, after which
it takes off.
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