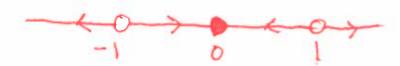
Problem 1. Suppose f(x) is a continuous function satisfying


1.
$$f(-1) = 0$$

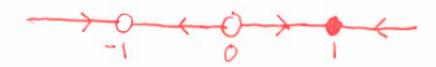
2.
$$f(0) = 0$$
,

3.
$$f(1) = 0$$
,

$$4. \lim_{x\to\infty} f(x) = \infty.$$

If the system $\dot{x} = f(x)$ has no semi-stable fixed points, sketch a phase portrait for this system.

Problem 2. Suppose f(x) is a continuous function satisfying


1.
$$f(-1) = 0$$

2.
$$f(0) = 0$$
,

3.
$$f(1) = 0$$
,

4.
$$f'(0) = 1$$
.

If the system $\dot{x} = f(x)$ has no semi-stable fixed points, sketch a phase portrait for this system.

Instructor: John Gemmer

Problem 1. Suppose f(x) is a continuous function satisfying

1.
$$f(-1) = 0$$

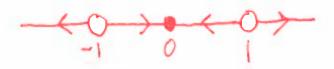
2.
$$f(0) = 0$$
,

3.
$$f(1) = 0$$
,

$$4. \lim_{x \to \infty} f(x) = -\infty.$$

If the system $\dot{x} = f(x)$ has no semi-stable fixed points, sketch a phase portrait for this system.

Problem 2. Suppose f(x) is a continuous function satisfying


1.
$$f(-1) = 0$$

2.
$$f(0) = 0$$
,

3.
$$f(1) = 0$$
,

4.
$$f'(0) = -1$$
.

If the system $\dot{x} = f(x)$ has no semi-stable fixed points, sketch a phase portrait for this system.

