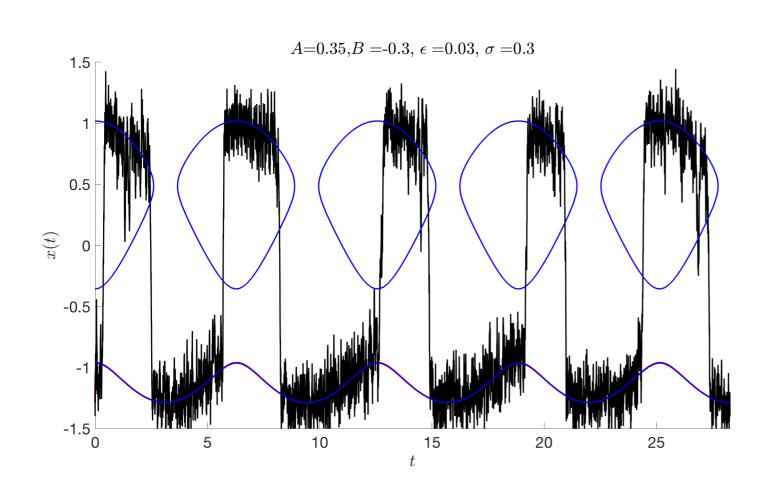
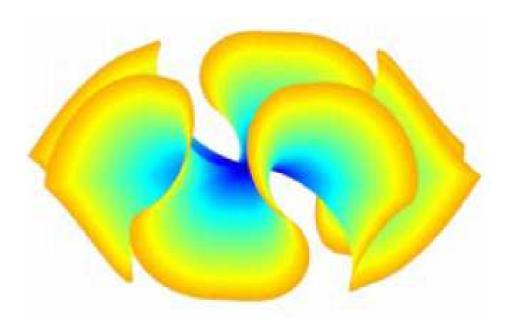
WFU Analysis Seminar: Nonlinear Analysis

John A. Gemmer gemmerj@wfu.edu





Collaborators

Max Rezek

Jessica Zanetell

Yuxin Chen

Alexandria Volkening

Shankar

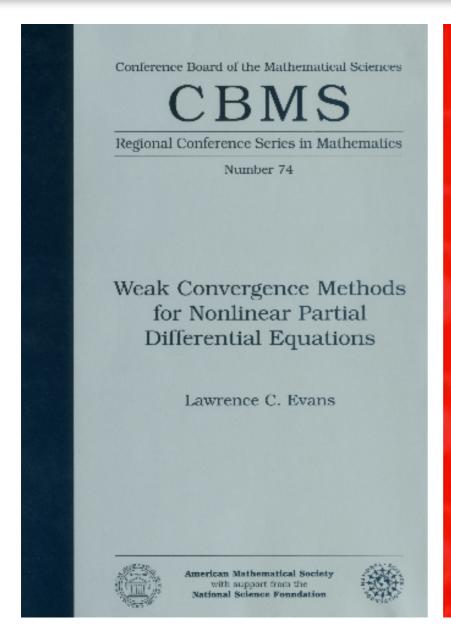
Bjorn Sandstede

Mary Silber

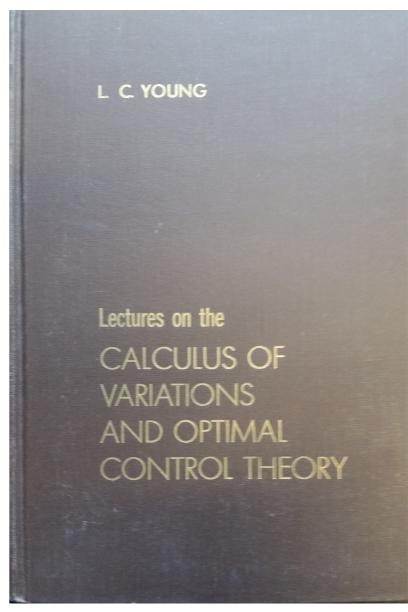
Outline

- 1. Lecture 1 (2/22/19) Survey of Nonlinear Analysis:
 - a. Intro to nonlinear methods
 - b. Intro to some modern problems in calculus of variations
 - c. Intro to Gamma convergence
- 2. Lecture 2 (3/01/19) Pattern Formation in Hyperbolic Sheets:
 - a. Intro to non-Euclidean model of thin elastic sheets
 - b. Existence and regularity of (some) solutions to Monge-Ampere equation
- 3. Lecture 3 (3/08/19) Large Deviations in SDES:
 - a. Intro to Friedlin-Wentzell functional
 - b. Tipping events in piecewise-smooth SDEs.

Books!







Evans, L. C. (1990). Weak convergence methods for nonlinear partial differential equations (No. 74). American Mathematical Soc..

Braides, A. (2002). Gamma-convergence for Beginners (Vol. 22). Clarendon Press.

Young, L. C. (2000). Lecture on the calculus of variations and optimal control theory (Vol. 304). American Mathematical Soc..

Big Picture

Conference Board of the Mathematical Sciences

CBMS

Regional Conference Series in Mathematics

Number 74

Weak Convergence Methods for Nonlinear Partial Differential Equations

Lawrence C. Evans

Solve the following equation:

$$N[u] = f$$

Idea: Solve approximate problem

$$N_k[u_k] = f_k$$

Goal: Prove the following

$$u_k \to u^*$$

$$N[u^*] = f$$

Problem: Weak Compactness

$$u_k \rightharpoonup u^*$$

$$N[u_k] \nrightarrow N[u^*]$$

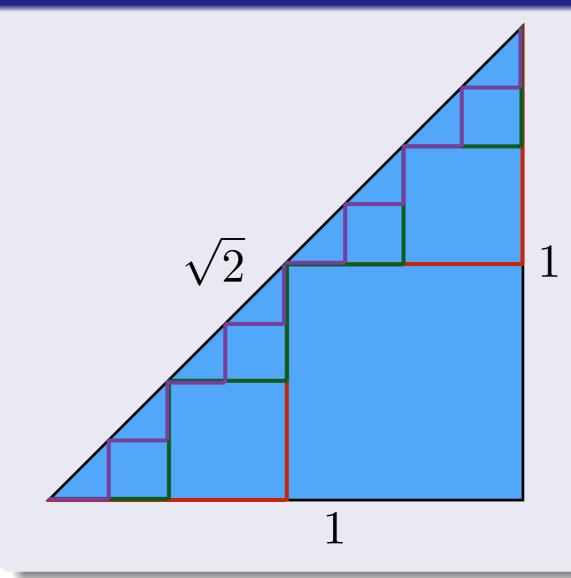
American Mathematical Society with support from the National Science Foundation

Why Care?

Theorem

$$\sqrt{2}=2$$

Proof.



$$f_1 =$$

$$f_2 = \mathcal{L}$$

$$f_3 = \mathcal{L}^{\mathcal{L}^{\mathcal{L}}}$$

$$L[f_1] = 2$$

$$L[f_2] = 2$$

$$L[f_3] = 2$$

$$L[f] = 2$$

The World's First Nonlinear Problem

Your "mathematical reality" is Q, solve the following equation:

$$x^2 = 2$$

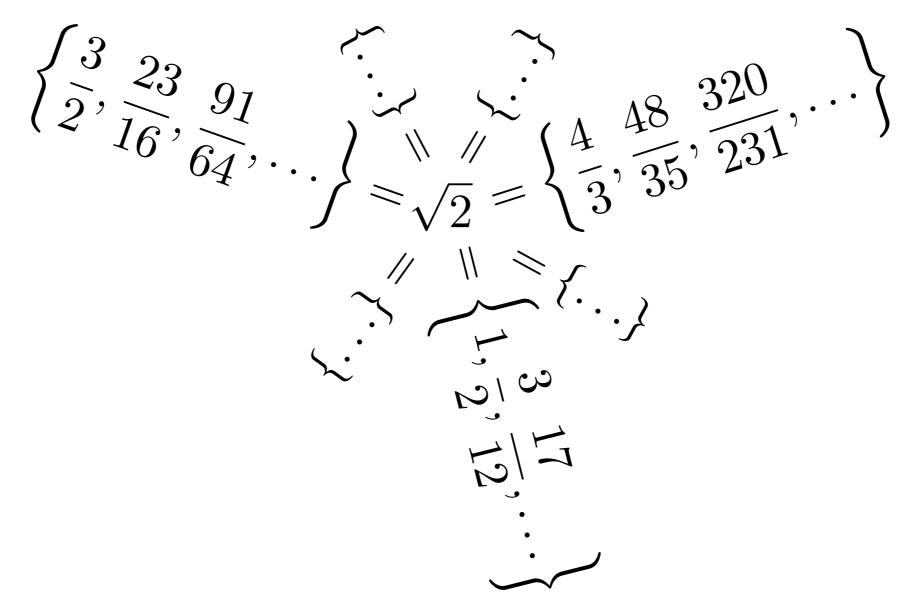
Approximation Schemes:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \qquad \{x_n\}_{n=1}^{\infty} = \left\{ 1, \frac{3}{2}, \frac{17}{12}, \frac{577}{408}, \dots \right\}$$

$$x_n = \sum_{m=1}^n \frac{(2m)!}{(1-2m)(m!)^2 2^{3m-1}} \left\{ x_n \right\}_{n=1}^\infty = \left\{ \frac{3}{2}, \frac{23}{16}, \frac{91}{64}, \dots \right\}$$

$$x_n = \prod_{m=0}^{n} \frac{(4m+2)^2}{(4m+1)(4m+3)} \quad \{x_n\}_{n=1}^{\infty} = \left\{ \frac{4}{3}, \frac{48}{35}, \frac{320}{231}, \dots \right\}$$

Solution to Square Root Problem



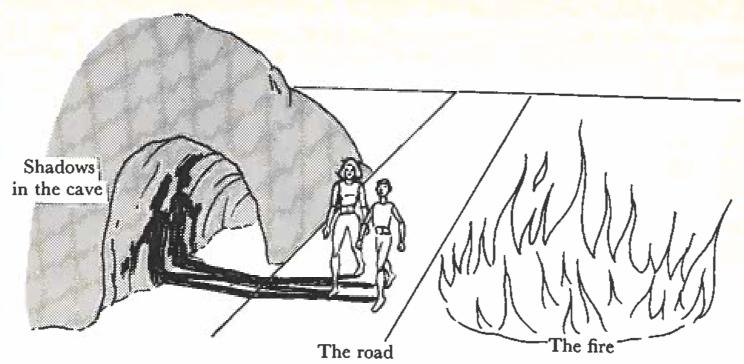
 $\sqrt{2}$ is an equivalence class of approximations schemes! That is, it is an equivalence class of Cauchy sequences.

Equivalence relation: $\lim |x_n - y_n| = 0$.

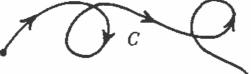
We All Live in a Cave

GENERALIZED CURVES AND FLOWS

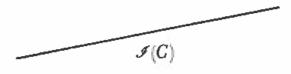
165



The classical concept of a curve G corresponds very closely to the curves that we see and draw; and such curves can twist and turn and zigzag back and forth; moreover they can have highly complicated self-intersections. This is only the shadow. If we choose to substitute for it the notion of curvilinear integral $\mathcal{I}(G)$, it will become an element g of our dual space $\mathscr{C}_0^*(A)$. This element, of course, we cannot see directly, but only by its shadow G. However, it is g and not G which obeys our criterion of simplicity, for g is a linear function of the new variable $f \in \mathscr{C}_0(A)$.



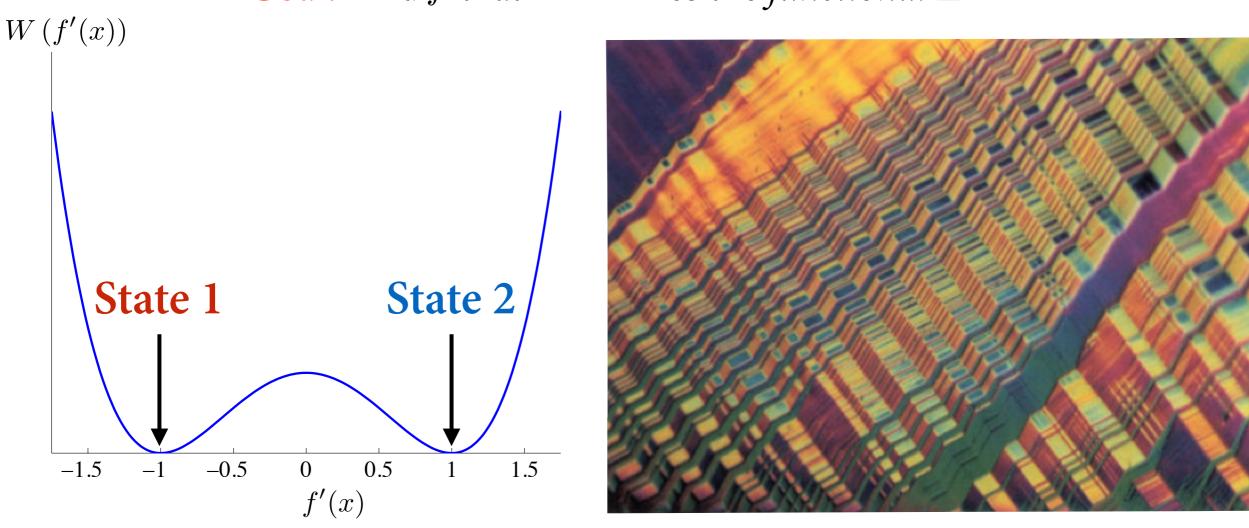
The shadow in the cave



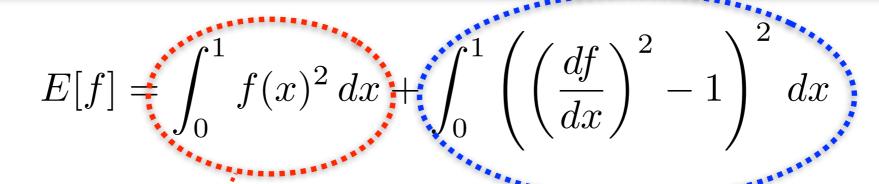
The real thing in $\mathscr{C}_0^*(A)$ (a linear function of f).

$$E[f] = \int_0^1 W(f'(x)) dx = \int_0^1 \left(\left(\frac{df}{dx} \right)^2 - 1 \right)^2 dx$$
$$f(0) = f(1) = 0$$

Goal: Find f that minimizes the functional E.

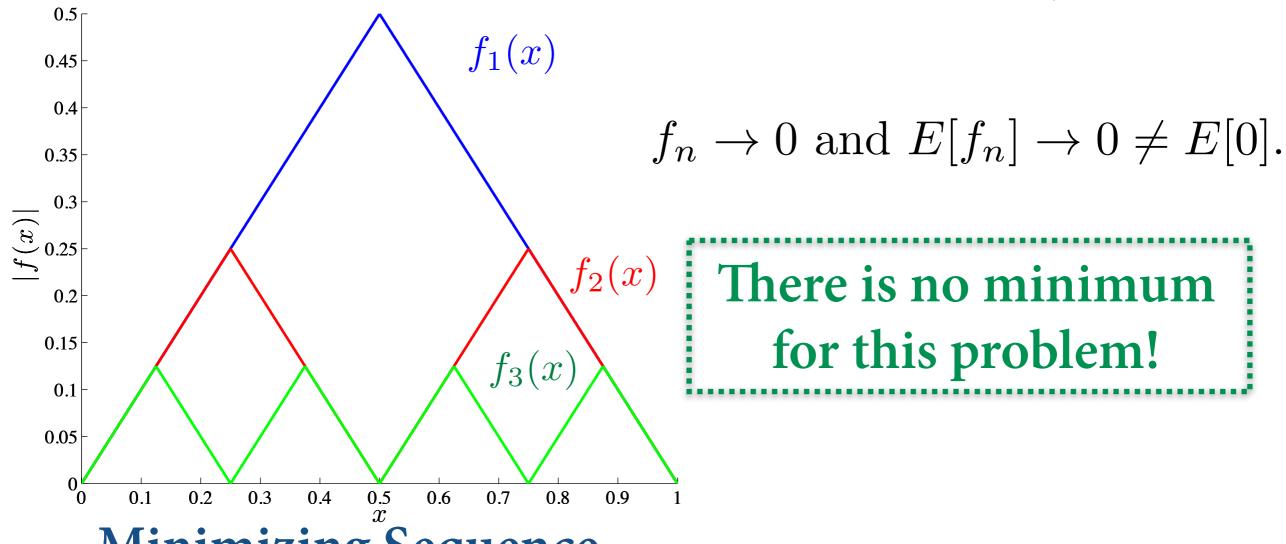


Infinite number of minimizers!



Vanishes when f = 0

Vanishes when $f' = \pm 1$

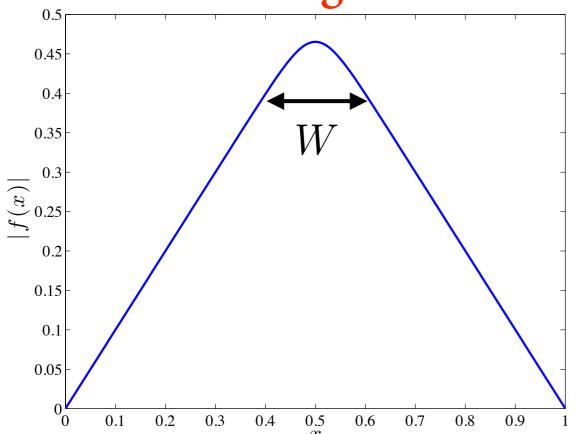


There is no minimum for this problem!

Minimizing Sequence

$$E_{\epsilon}[f] = \frac{1}{\epsilon} \int_0^1 \left(\left(\frac{df}{dx} \right)^2 - 1 \right)^2 dx + \epsilon \int_0^1 \left(\frac{d^2 f}{dx^2} \right)^2 dx.$$

Good guess:



$$E_{\epsilon}[f_W] \approx \frac{1}{\epsilon} \int_0^W \frac{1}{4} dx + \epsilon \int_0^W \frac{4}{W^2} ds$$
$$= \frac{W}{4\epsilon} + \frac{4\epsilon}{W}$$

Optimize over W:

$$W = \epsilon$$

$$\Rightarrow \min E_{\epsilon}[f] \le C.$$

Limiting Energy

$$\lim_{\epsilon \to 0} E_{\epsilon}[f] = \begin{cases} \frac{8}{3} \text{ for triangles,} & \text{if } f = \pm 1 \text{ a.e.} \\ \infty, & \text{o.w.} \end{cases}$$

$$E_{\epsilon}[f] = \frac{1}{\epsilon} \int_{0}^{1} \left(\left(\frac{df}{dx} \right)^{2} - 1 \right)^{2} dx + \epsilon \int_{0}^{1} \left(\frac{d^{2}f}{dx^{2}} \right)^{2} dx.$$

$$\epsilon = 0.31623$$

$$\epsilon = 0.31623$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

$$0.35$$

Energy concentrates on tip of triangle (Defect).

$$E[f] = \delta^2 \int_0^1 f(x)^2 dx + \int_0^1 \left(\left(\frac{df}{dx} \right)^2 - 1 \right)^2 dx + \epsilon^2 \int_0^1 \left(\frac{d^2 f}{dx^2} \right)^2 dx.$$

$$0.5$$

$$0.4$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$1$$

$$N = \# \text{ of triangles } \Rightarrow E[f] \approx \frac{1}{8N^2} + \frac{8}{3}\epsilon N$$

$$Optimizing \Rightarrow N = .45\delta^{\frac{2}{3}}\epsilon^{-\frac{1}{3}}$$

$$E[f] = \delta^2 \int_0^1 f(x)^2 dx + \int_0^1 \left(\left(\frac{df}{dx} \right)^2 - 1 \right)^2 dx + \epsilon^2 \int_0^1 \left(\frac{d^2 f}{dx^2} \right)^2 dx.$$

$$\delta = 1, \ \epsilon = 0.31623 \ \text{and} \ N = 1$$

$$\delta = 1, \ \epsilon = 0.31623 \ \text{and} \ N = 1$$

$$\delta = 1, \ \epsilon = 0.31623 \ \text{and} \ N = 1$$

Energy concentrates on defects.

Gamma-Limits

Definition: Let $F_n: X \mapsto \mathbb{R}$. We say F_n Γ -converges to

 $F: X \mapsto \mathbb{R}$ and write $\Gamma - \lim_{n \to \infty} F_n = F$ if

1. Asymptotic Lower Bound: For every $x \in X$, and every $x_n \to x$ in X:

$$F(x) \leq \liminf_{n \to \infty} F_n(x_n).$$

2. Recovery Sequence: For every $x \in X$, there exists some $x_n \in X$ such that $x_n \to X$ in X and:

$$F(x) \ge \limsup_{n \to \infty} F_n(x_n).$$

Theorem (Fundamental Theorem of Γ-Convergence)

If $F_n \xrightarrow{\Gamma} F$ and x_n minimizes F_n , then every limit point of the sequence $(x_n)_{n \in \mathbb{N}}$ is a minimizer of F.

Examples:

$$\Gamma - \lim_{n \to \infty} \cos(nx)$$
?

$$\Gamma - \lim_{n \to \infty} \left(\frac{1}{2} x^2 + \sin(nx) \right)$$
?

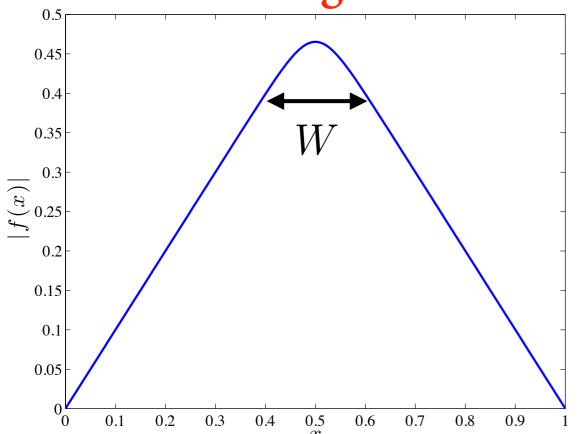
$$\Gamma - \lim_{n \to \infty} \begin{cases} 0 & x \le -\frac{1}{n} \\ \frac{nx+1}{2} & -\frac{1}{n} \le x \le \frac{1}{n} \end{cases}$$

$$1 \quad x \ge \frac{1}{n}$$

$$\Gamma - \lim_{n \to \infty} nx \exp(nx)$$
?

$$E_{\epsilon}[f] = \frac{1}{\epsilon} \int_0^1 \left(\left(\frac{df}{dx} \right)^2 - 1 \right)^2 dx + \epsilon \int_0^1 \left(\frac{d^2 f}{dx^2} \right)^2 dx.$$

Good guess:



$$E_{\epsilon}[f_W] \approx \frac{1}{\epsilon} \int_0^W \frac{1}{4} dx + \epsilon \int_0^W \frac{4}{W^2} ds$$
$$= \frac{W}{4\epsilon} + \frac{4\epsilon}{W}$$

Optimize over W:

$$W = \epsilon$$

$$\Rightarrow \min E_{\epsilon}[f] \le C.$$

Limiting Energy

$$\lim_{\epsilon \to 0} E_{\epsilon}[f] = \begin{cases} \frac{8}{3} \text{ for triangles,} & \text{if } f = \pm 1 \text{ a.e.} \\ \infty, & \text{o.w.} \end{cases}$$

Observations

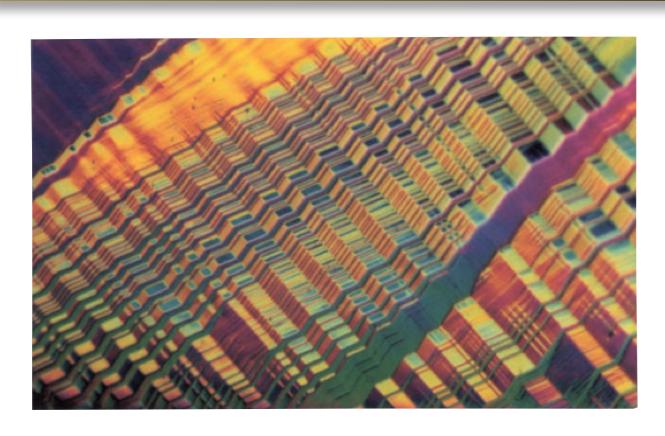
$$E[f] = \delta^2 \int_0^1 f(x)^2 dx + \int_0^1 \left(\left(\frac{df}{dx} \right)^2 - 1 \right)^2 dx + \epsilon^2 \int_0^1 \left(\frac{d^2 f}{dx^2} \right)^2 dx.$$

- 1. Competition between different terms energy scales drives pattern formation.
- 2. "Simple" differential equations give the correct pattern.
- 3. Knowing how the patterns partition energy (scaling laws), the problem reduces to solving a discrete optimization problem.

Big Picture:

- In an indirect manner we have developed rigorous asymptotic approximations to solutions to a fourth order nonlinear differential equation.
- We have also developed a simple robust discrete numerical algorithm for solving the equation.
- This technique is similar to the viscosity method for regularizing shocks in hyperbolic systems.

Why Care?



Live Update on Rare Events

Snowing in
Tucson!

