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Broadly, my research interests lie in applied analysis as well as in studying and developing mathe-
matical models of phenomenon in the physical and biological sciences. As an applied mathematician,
I find significant professional satisfaction studying “toy” models of systems which can yield concrete
insights into phenomena observed in nature. In my work, I have developed expertise in calculus of vari-
ations, mathematical modeling, applied analysis, continuum mechanics, asymptotic methods, ordinary
and partial differential equations, stochastic differential equations, dynamical systems and Riemannian
geometry. A unifying theme of my work is the application of variational methods to problems in applied
mathematics and interdisciplinary projects. I am also dedicated to fostering undergraduate research,
and some of my published work has been done in collaboration with students. In this document, I
provide a brief high level overview of my work, a more technical but still brief summary of my main
results, and conclude with my plans for future research.

1 Overview of Scholarship

1.1 Main Scientific Publications

Swelling thin elastic sheets: In a sequence of works conducted primarily in collaboration with
Shankar Venkataramani (University of Arizona) and experimental physicist Eran Sharon (Hebrew
University of Israel), I analyzed the formation of patterns in growing thin elastic sheets. Specifically,
our work in [1–5] studied the relationship between the existence and regularity of isometric immersions
of two dimensional hyperbolic Riemannian manifolds in R3, variational models of growth, and the
undulating patterns observed in leaves, swelling hydrogels, potato chips, etc. The key result of our
work is the discovery of a novel type of topological defect consisting of local isometries with “lines of
inflection” meeting at “branch points.” While smooth isometric immersions exist, these defects were
used to construct fractal like C1,1 surfaces with lower elastic energy than their smooth counterparts.
These results are surprising in that it was commonly believed that such geometric complexity results
from boundary conditions or external forces that cause the sheet to buckle into approximately low
regularity isometric immersions, e.g., crumpled paper, elastic ridges, d-cones. Indeed, a common argu-
ment for the formation of microstructure in such systems is that since the Euler-Lagrange equations
corresponding to the elastic energy consist of a system of singularly perturbed equations, it follows
that solutions will contain boundary layers in which the elastic energy is concentrated. In contrast,
for hyperbolic sheets, our construction shows that while branch points and lines of inflection introduce
regions of lower regularity, the elastic energy does not concentrate around these defects. The existence
of such nontrivial defects plays a substantial role in the mechanics of thin hyperbolic sheets by allow-
ing for the circumvention of the rigidity of smooth isometric immersions which further allows for a
combinatorially large number of low energy states. Taken together, our results show that hyperbolic
thin sheets are a very “floppy” system with fascinating geometries and mechanical properties.

Phase shaping of beams: In collaboration with experimental physicist Charles Durfee (Colorado
School of Mines), Jerome Moloney (University of Arizona) and Shankar Venkataramani, I studied the
problem of phase shaping beams of light into desired intensity profiles over long distances, e.g., one
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kilometer. In many applications, the geometry of the initial intensity profile of a beam is fixed by the
design of the laser but the spatial phase of the beam can be modified through optical instruments. The
phase shaping problem is then to design the optical instruments so that the beam of light achieves a
desired intensity profile along the optical axis, e.g., a Gaussian profile. The challenge with this problem
is that due to its wave nature localized packets of light will broaden spatially through diffraction.
Using explicit integral transform solutions of the paraxial wave equation, i.e., the linear Schrodinger
equation, we posed this problem in [6] within a variational framework and used the method of stationary
phase coupled with the Gerchberg–Saxton algorithm to develop a computationally efficient algorithm
for obtaining the optimal phase. We expanded upon this work in [7] and proved a version of the
uncertainty principle to obtain rigorous scaling laws for the optimal phase in terms of the relevant
design parameters in the problem.

Image stabilization on the retina: In collaboration primarily with biologists David Berson (Brown
University), Shai Sabbah (Hebrew University of Jerusalem) and Nathan Jeffery (University of Liver-
pool), I published a full article in Nature [8]. In this work, I used tools from projective geometry,
continuum mechanics, and optimization theory to develop a mathematical model that was used to
deduce how retinal ganglion cells and the accessory optic system encode the direction and spatial ori-
entation of perceived objects moving in space. The challenge with this work is that cell response is
not recorded from the retina’s natural state (approximately spherical) but from retinas flattened on a
slide. To my knowledge, our work was the first to correctly account for geometric distortions resulting
from the elastic flattening. Our mathematical model was used to construct a complete mapping of
direction selective cells which was compared with the optic flow resulting from the animals movement
in space. Our work showed a strong correlation between the geometry of the retinal ganglion cells in
mice and forward-backward motion of the animal as well as motion along the gravitational axis. While
this result might not seem surprising, it is important to note that the eyes of mice are not forward
facing as in humans but are on the side of the head and are slightly tilted upward. This result indicates
that the orientation of direction selective cells are non-trivially oriented throughout the retina to align
with common motions of the animal. While in this work I am the second author of many, most of the
co-authors were lab technicians and undergraduate students who conducted the basic experimental
work. The experimental design and management of the lab was conducted by my colleagues Shai
Sabbah and David Berson while the three dimensional reconstruction of the animal was done by my
colleague Nathan Jeffrey. I conducted all of the mathematical research, mathematical modeling, and
numerical reconstruction of the retina from flat mount data.

Noise-induced tipping in periodically forced systems: In collaboration with graduate student
Yuxin Chen (Northwestern University), Mary Silber (University of Chicago), and Alexandria Volkening
(Purdue University), I studied the problem of determining the most probable noise-induced transition
paths in periodically forced one dimensional stochastic differential equations [9]. We specifically stud-
ied the local and global minimizers of the Freidlin Wentzell (FW) and Onsager-Machlup (OM) rate
functionals to determine the most probable transition paths. Within the class of the periodically forced
systems we analyzed, we showed that for a forcing frequency intermediate between adiabatic and fast
forcing, local minimizers of the OM functional depart the stable periodic orbits at times when the flow
locally changes from expansive to compressive; thus providing a robust estimator for a time in phase
space in which the system is susceptible to noise induced tipping.

Free boundary problems in polygonal domains: In collaboration with Sarah Raynor (Wake
Forest University) and graduate student Gary Moon (UNC Chapel Hill), I developed and proved strong
convergence of an algorithm for numerically computing solutions to an elliptic two-phase free boundary
problem with Neumann fixed boundary conditions in [10]. Solutions to this problem correspond to
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critical points of a functional and the algorithm relaxed the functional by mollification and exploited
the variational structure to obtain solutions as a stationary point for a gradient flow. The algorithm
was used to numerically explore the interaction of the free boundary with acute and obtuse corner
points.

Noise-induced tipping in piecewise smooth systems: In collaboration with my postdoc Kaitlin
Hill (Wake Forest) and former graduate student Jessica Zanetell (Wake Forest), I studied the problem
of determining the most probable transition path in stochastic differential equations with a piecewise
smooth drift. Specifically, in [11] we considered n-dimensional systems with a switching manifold that
forms an n − 1-dimensional hyperplane. Our approach was to mollify the system and consider the
Γ-limit of the FW functional in the piecewise smooth limit. The resulting functional consists of the
standard FW functional with an additional contribution due to times when the most probable path
slides on the switching manifold. Interestingly, the additional contribution exactly vanishes for paths
that follow the Filippov dynamics, i.e., the convex combination of the vector fields on either side of
the switching manifold for which the normal component vanishes. This result proves, to first order in
the mollification parameter, Filippov’s original convex combination approach to resolve the dynamics
in regions of discontinuity is the correct approach when considering the effect of additive noise.

1.2 Publications with Undergraduate Students

Brachistochrone problem in an inverse square gravitational field: In [12], under my men-
torship, my former undergraduate student Chris Grimm studied the problem of determining brachis-
tochrone curves for particles falling in an inverse square gravitational field. This problem is a nontrivial
application of calculus of variations in that if only strong solutions to the corresponding Euler-Lagrange
equations are considered, then it can be shown there exists a “forbidden region” through which the
strong solutions do not penetrate. The novelty of this work is that by considering appropriate weak
solutions constructed from local strong solutions patched together at the singular point of the gravita-
tional field, we showed that the full space of optimal paths is more robust. In particular, these solutions
enter the forbidden region and are characteristics for the Hamilton-Jacobi equation. Moreover, by also
considering the inverse-square problem on an annular domain that excises the singularity at the origin,
we proved that our weak solutions are recovered in the limit as the inner radius of the annulus vanishes.

Disease dynamics on adaptive networks: In [13], under my mentorship, my former undergradu-
ate student Hannah Scanlon developed and analyzed a mathematical model for the spread of an SIR
infectious disease on a network in which individuals can pause connections with infected neighbors.
The novelty of this work is that we derived a mean field approximation for the density of the various
node and edge states in the network. In particular, many works on modeling disease dynamics simply
start from a standard system of differential equations, i.e., SIS or SIR, and introduce additional com-
partments, e.g., exposed (E), quarantined (Q), hospitalized (H), to account for additional complexity.
However, it is often not clear how such approaches arise from the network dynamics and, moreover,
they do not account for the change in the network topology as the disease progresses. Our approach
differed in that our system of differential equations resulted by computing the continuum limit of a ba-
sic stochastic SIR model with an additional transition probability incorporating the pausing of edges.
The resulting system can exhibit more complex phenomenon than the standard SIR model without
the necessity of introducing additional compartments. Moreover, we proved that while the standard
value for the basic reproductive number R0 is identical to the classic SIR model, there are additional
parameter regimes in which the severity of the epidemic is drastically reduced. This result provides
criteria beyond R0 < 1, namely different criteria on the pausing rate for controlling the spread of an
infectious disease.
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2 Scientific Contributions

2.1 Swelling Thin Elastic Sheets

The rippling patterns observed in swelling hydrogels, leaves, and torn plastic provide striking examples
of periodic and self-similar patterns; see Fig.1. One model of growing thin elastic sheets is the non-
Euclidean model of elasticity which posits that growth permanently deforms the intrinsic distance
between material points. Material points on the center surface are labelled by (x, y) ∈ Ω, a subset
of R2, and the natural distances between points in the center surface are encoded in the arc length
element:

ds2 = g11(x, y)dx
2 + 2g12(x, y)dxdy + g22(x, y)dy

2, (1)

with gij the components of a Riemannian metric g [14–16]. That is, the Riemannian metric g models
the growth process by encoding the distorted strain free distance between material coordinates. By the
Kirchoff hypothesis [17], the conformation of the sheet as a 3-dimensional object in R3 is determined
by an immersion F : Ω → R3 of the center surface. By Gauss’s Theorema Egregium, g generates an
intrinsic definition of Gaussian curvature K throughout the sheet. Locally, K < 0 (K > 0) corresponds
to the regions in which local growth (atrophy) occurs in the sheet. In this framework, the elastic energy
is then modeled as the sum of stretching and bending contributions:

E[F ] = S[∇F ] + t2B[D2F ] =

∫

Ω
∥(∇F )T · ∇F − g∥2 dxdy + t2

∫

Ω

(
k21 + k22

)
dxdy, (2)

where t is the thickness of the sheet and k1, k2 are the principal curvatures of F [14, 18].

(a) (b)

(c)

Figure 1: Examples of periodic and self-similar wrinkling patterns in swelling thin elastic sheets. (a)
Hydrogel disk with non-uniform swelling pattern. (b) Ornamental echeveria plant. (c) Edge of a torn
trash bag.

Due to the relative strength of stretching to bending rigidity, it is natural to expect that thin
sheets deform into low bending energy configurations that remove all in-plane strain. This corresponds
to the “restricted” problem of minimizing the bending energy over all isometric immersions of the
Riemannian 2-manifold (Ω,g), i.e., deformations satisfying (∇F )T · ∇F = g. Indeed, provided they
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exist, finite bending energy isometric immersions of (Ω,g) are the t → 0 limits of minimizers of the
“full” elastic energy (2) [19]. For K uniformly negative, however, the extrinsic geometry of the system
imposes that with increasing domain size smooth isometries will develop singularities where one of the
principal curvatures diverges [20] and for K = −1 these singularities form curves – “singular edges”
– across which the bending energy diverges [21]. Moreover, the Nash embedding theorem guarantees
the existence of at least C1 regular isometric immersions [22], but these surfaces are too rough to be
candidates for a minimizer. A natural question then is: What is the behavior of minimizers of the
elastic energy given the constraints on the regularity of isometric immersions for hyperbolic metrics?

2.1.1 Sheets with constant negative Gaussian curvature

In [1] we studied this problem for growth profiles with corresponding constant negative Gaussian
curvature K0. In this setting, the problem of studying the elastic energy of isometric immersions
reduces to analyzing the behavior of solutions to the sine-Gordon equation:

∂2ϕ

∂x∂y
= −K0 sin(ϕ), (3)

where ϕ, restricted to lie in the set [0, π], is the angle between coordinate curves in a Chebychev net
(C-net) parametrization [23]. By considering smooth solutions to Eq.(3), we showed that the principal
curvatures of smooth isometric immersions satisfy the following scaling law:

max{|k1|, |k2|} ≥ 1

64
exp

(
|K0|

1
2R

)
, (4)

where R is the diameter of the domain Ω. This scaling law emphasizes that, with increasing domain
size, it becomes prohibitively expensive to maintain smoothness and the isometry constraint. By ex-
plicit construction, we showed that an energetically favorable alternative is for the sheet to introduce
mild singularities in the form of lines of inflection to obtain n-periodic “monkey saddles.” Specifi-
cally, these isometries are formed by solving Eq.(3) with boundary conditions that enforce the C-net
parameterization to contain two straight asymptotic lines that intersect at the origin. By taking odd
periodic reflections about these lines, the monkey saddles can be constructed; see Fig.2(a). These
monkey saddles are not smooth – every smooth isometry locally has the shape of a saddle – but never-
theless are finite bending energy isometric immersions, i.e., W 2,2 isometric immersions. In particular,
as illustrated in Fig.2(b), for moderate domain sizes these isometries have lower elastic energy than
their smooth counterparts. Moreover, these shapes qualitatively agree with controlled experiments on
hydrogels with constant Gaussian curvature [24]; see Fig.2(c).

Fig.2(c) indicates that, for constant Gaussian curvature, the sheets adopt increasingly complex
shapes with decreasing thickness. In [1, 2], we analyzed this phenomenon within the “small-slope”
regime. Namely, defining the small parameter ϵ =

√
|K0|R, we assumed an in-plane and out-of-plane

ansatz of the form
F = i+

√
K0i⊥ ◦ η +K0i ◦ χ, (5)

where χ ∈ W 1,2(Ω,R2), η ∈ W 2,2(Ω,R), i : R2 7→ R3 is the standard immersion and i⊥ maps into the
orthogonal compliment of i(R2). Keeping terms only up to order ϵ2, the solvability condition for the
existence of an isometric immersion is the following Monge-Ampere equation:

det(D2η) = −1. (6)

Eq.(6) can be solved explicitly by assuming η = ax2+ bxy+cy2 which reduces the differential equation
to the simple algebraic equation 4ac− b2 = −1. The global minimum of the elastic energy is obtained
by the harmonic function η = xy which corresponds to a minimal surface within the small-slope
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Periodic Isometric Immersions

I A one parameter family of isometric immersions exist and are of the
form

⌘a =
1

2

✓
ax2 � 1

a
y2

◆
.

I By letting a = tan(⇡/2n) we can construct n-wave isometric
immersions through odd periodic extensions.

I This gives us the upper bound

E⌧ [x]  ⇡⌧ 2
�
4 cot2(⇡/n) + 1

�
.

(a)

Fig. 13 The energy W of discs cut from periodic Amsler surfaces
An with n = 2,3,4,5 waves. The vertical dashed lines correspond to
the radius where the principal curvatures of An diverge. The dashed
curve corresponds to the energy W of disks cut from hyperboloids of
revolution.

isometric immersions of H2 grow exponentially with the
size of the domain highlights the fact that the two dimen-
sionless numbers t/R and ε =

√
|K0|R both contribute

to the morphology of the sheets. More accurate mod-
els have to account for both of these scales, not just the
thin limit t/R → 0. In particular, for a fixed surface of
constant negative Gaussian curvature, if ε " 1 then the
bending content will be large in regions where the prin-
cipal curvatures diverge. Within these regions it is nat-
ural to expect the surface to stretch to relieve this diver-
gent bending energy. This reduction in large bending en-
ergy through stretching is not captured in either the FvK
model in which much of the geometrical complexities are
removed or the Kirchhoff model in which the sheet is as-
sumed to be infinitesmally thin. It may be more appropri-
ate to consider a combination of different asymptotic ap-
proximations to the full elastic energy in various regions
of the domain. A hierarchy of such theories has been con-
jectured to exist57 and further research in this area may
better elucidate the role both geometry and elasticity play
in the realized equilibrium shape of the sheet.

3. For the periodic isometric immersions we constructed in
the Kirchhoff approximation the number of waves is de-
termined by the local property that at the origin the im-
mersion has more then two asymptotic directions. At
such points the immersion is necessarily non-smooth to
account for the multiple directions of vanishing curva-
ture and have thus have been called bifurcation points.96

Although the piecewise smooth surfaces we constructed
have lower energy then their smooth counterparts, it is
conceivable that more complicated isometric immersions
containing multiple bifurcations but having lower energy
could exist. Moreover, bifurcation points are a generic

feature of hyperbolic geometries in that for metrics with
negative Gaussian curvature sufficiently bounded away
from zero it is always possible to find a global iso-
metric immersion, except it can have multiple bifurca-
tion points.96 The geometry of such surfaces could serve
as a model for the observed morphology in many non-
Euclidean which do not have a globally defined number
of waves, but rather have local buckling behavior which
increases the number of waves near the boundary.1
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Crochet Images courtesy of Gabriele Meyer.

(c)

(d) (e)

Figure 2: (a) One parameter family of isometric immersions formed by taking odd periodic extensions
of solutions to Eq.3 about lines of inflection. (b) The bending energy of n-wave (n = 2, 3, 4, 5) piecewise
smooth isometric immersions of constant Gaussian curvature K0. The vertical dashed lines correspond
to the radius where the bending energy diverges. The dashed curve corresponds to the optimal bending
energy for smooth isometric immersions (c) Hydrogel disks with constant radius R = 14mm, constant
Gaussian curvature K0 = −.0011mm−2 and varying decreasing thickness clockwise from the upper
left [24]. (d-e) Three and nine sub-wrinkle solutions created by inserting rotated and translated copies
of solutions to Eq.(6) onto the solution η = xy.

.

approximation. As above, n-wave monkey saddle solutions to Eq.(6) can also be constructed by
introducing lines of inflection and taking odd periodic reflections. Moreover, in [4], we showed that
these types of defects can be introduced in the sheet not at just the origin but at generic “branch
points” by inserting rotated and translated copies of solutions to Eq.(6) in such a manner that the
isometric immersion remains W 2,2; see Fig.2(d-e). This process can be done in a self-similar manner to
at least qualitatively reproduce the patterns observed in torn plastic. However, using a priori estimates
we proved in [2] that the full elastic energy satisfies the scaling law

cnt2 ≤ inf E[F ] ≤ Cn2t2 (7)

in the small-slope regime. This result quantifies the tradeoff in energy that occurs by increasing the
number of waves in the profile and proves that in the small-slope regime for sheets with constant Gaus-
sian curvature there can be no refinement of the wavelength of minimizers with decreasing thickness.
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2.1.2 Spatially varying Gaussian curvature

In [4,5], we extended our analysis from the constant curvature case to problems with spatially varying
Gaussian curvature. Namely, we studied the following Monge-Ampere equation:

det(D2η) = −f ′′(y)
2

, (8)

where f is a positive, monotone decreasing, concave function that models localized swelling near the
edge of the domain. For p > 0, we found explicit solutions to this equation for f(y) ∼ (1 + y/l)−p and
f(y) ∼ exp(−y/l) where l > 0 is a length scale associated with the swelling. Similar to the construction
for constant negative curvature, we show that periodic solutions to Eq.(8) can be constructed by odd
extension across lines of inflection that have lower energy than their smooth counterparts. However, in
this case we showed by explicit construction that the introduction of branch points drastically lowers
the elastic energy of the sheet. The numerical algorithm for constructing these piecewise smooth
isometric immersions was published in [5].

One of the key insights of our work was to introduce a dimensionless geometric quantity η =
H/

√
|K|, termed the disparity, which quantifies the local contribution to the bending content of the

sheet arising from the mismatch in the principal curvatures. In regions in which solutions of Eq.(8) has
a large disparity, it was energetically favorable to introduce a branch point to lower the elastic energy;
see Fig.3(a). Indeed, by comparing the elastic energy of sheets we showed that it is energetically
favorable to introduce branch points as the size of the domain increase; see Fig.3(b). This result
highlights the fact that these defects are unique in that they do not concentrate elastic energy in the
vanishing thickness limit. They arise to bypass the geometric rigidity of smooth isometric immersions
which prevents the refinement of the pattern wavelength. To our knowledge, this is the first example
of a condensed-matter system whose morphology is driven by geometric rather than energetic defects.

(a) (b)

Figure 3: (a) Four-branch-point isometric immersion for the growth profile f(y) = (1 + y/l)−1. The
surface is colored by the local disparity η. (b) Comparison of the elastic energy between isometric
immersions containing no branch points, one branch point, and four branch points.

2.2 Phase Shaping of Beams

In many applications, it is desirable to shape a beam or pulse of light so that it has specific properties
along the optical axis. In particular, for applications in microscopic imaging [25], optical tweezers [26],
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laser micro-machining [27], dressing of optical filaments [28], filament formation [29], and long-range
laser ablation [30, 31], to name a few, it is important to have a well-controlled beam with a nearly
uniform intensity along the optical axis. However, due to its wave nature localized packets of light will
broaden spatially through diffraction. For example, Gaussian beams of width W0 and wavenumber k
double in spatial extent over the Rayleigh range zR ∼ W 2

0 k/2 [32]. In [6,7], we studied the problem of
“beating” the Rayleigh range by applying a radially symmetric phase function ϕ(r) at the input plane
z = 0 to focus a ring beam intensity profile E0f(r) of radius r0 and width W0 onto a target intensity
profile ETFT (z) of width WT along the optical axis centered at a target distance zd; see Fig 4.

Figure 4: A schematic diagram for the geometry of the beam shaping problem.

In our work, we reformulated this optical design problem in terms of a minimization problem for
the following functional:

I[φ] = ∥G(Ω)− |F [g(s) exp (iφ(s))](Ω)| ∥L2 , (9)

where g and G are given positive compactly supported functions, F denotes the Fourier transform, and
the minimization is over the space M of measurable functions on R+. This problem is closely related
to the problem of phase retrieval from two intensity measurements, i.e., the problem of determining the
complex argument of a function given both knowledge of the modulus of a function and the modulus of
its Fourier transform. Within the context of phase retrieval, the most common technique for optimizing
I is the alternating projection algorithm pioneered by Gerchberg and Saxton [33] and its variants, such
as the hybrid input-output algorithm developed by Fienup [34].

The original Gerchberg-Saxton (GS) is an error reducing algorithm in the sense that I[φn+1] ≤
I[φn]. However, this property alone does not guarantee convergence of the algorithm. In particular,
while projection algorithms converge when the projections are onto convex sets [35,36], for fixed s on Ω
the projections employed by the GS algorithm are equivalent to projections onto the boundary of the
unit ball in C which is clearly not convex. This lack of convexity commonly leads to stagnation of the
algorithm away from the global minimum which must be overcome by additional ad hoc means [37–39].
However, while in phase retrieval it is clear that the minimum value is zero, for the optimization problem
we considered this is not the case and, in fact, the minimum may be significantly bounded away from
zero. Therefore, when applied to this variational problem it is not clear a priori what a sufficient
convergence criterion for the GS algorithm would be.

In [6,7] we developed an adapted version of the GS algorithm to avoid this stagnation issue. Namely,
we used the method of stationary phase to reduce the problem of creating an accurate guess for the
GS algorithm to that of solving an initial value problem. The solution to this initial value problem
provides a very accurate ansatz for the optimal phase in the short wavelength limit kr0W0WT /z

2
d ≫

2π. Moreover, using essentially the uncertainty principle, we proved ansatz free lower bounds on the
minimum value of this functional which quantify that a necessary condition for accurate beam shaping
is that

β =
2kWTW0r0
4z2d −W 2

T

> π. (10)

The central result of our work is the identification of the dimensionless quantity β’s critical role in



John Gemmer Research Summary 9

determining the accuracy and applicability of phase shaping in term of the design parameters. Namely,
we identified three scaling regimes:

1. For β ≪ π, the uncertainty principle guarantees that neither the GS algorithm nor any other
numerical algorithm will yield accurate shaping of the beam.

2. For β ≫ π, the method of stationary phase yields a very accurate approximation to the optimal
shaper phase. This asymptotic regime can be considered within the geometrical optics setting in
the sense that light rays originating from the input plane are accurately mapped to the target
intensity profile.

3. For β ∼ π, the phase produced by the method of stationary phase is significantly improved upon
by the GS algorithm. However, a universal scaling law for the error in terms of the wavelength
is not possible.

2.3 Image Stabilization on the Retina

When animals move in space, visual feedback and stimulus from otolithic organs and the semicircular
canals within the inner ear drive image stabilization and head movements [40, 41]. On the retina,
movement through space induces a vector field with the corresponding optic flow detected through
stimulation of ON-OFF direction sensitive ganglion cells (ON-OFF-DSGCs). Specificaly, ON-OFF-
DSGCs are a type of neuron that becomes excited by optic flow from a specific direction [42, 43]. A
natural question to ask is how are the ON-OFF-DSGCs distributed in the retina so that they can
process the spherical geometry of the optic flow.

In [8], I worked with an interdisciplinary team to address this question by developing a mathematical
model for optical flow that could be compared with in-vitro measurements of the position and direction
sensitivity of ON-OFF-DSGCs. However, given that such measurements are conducted on flat mounted
retinas, an elastic model for the flattening of the retina was needed to accurately map the recorded
data back to the spherical retina. To do so, I modeled the retina as a truncated sphere S of radius R
and maximal longitudinal distance M with four cuts made along lines of longitude. The retina was
parameterized by a map x with domain of parameterization Ω, whose local coordinates are given by
arc-length s as measured from the south pole and θ the azimuthal angle. The four relieving cuts were
assumed to lie along meridians so that Ω can be decomposed into four sectors Ωi. The flat-mounted
retina from which data was collected was modeled by a domain D ⊂ R2, and the flattening of the
retina was modeled by a mapping F : Ω 7→ D ⊂ R2 that minimized an appropriate elastic energy.
Specifically, we assumed the retina was an isotropic, incompressible, elastic material with linear stress-
strain constitutive relationship and modeled the per-unit thickness elastic energy of a flattening map
F ∈ W 1,4(Ω,Ω′) by

E[F ] =

4∑

i=1

∫

Ωi

[
ν (γ11 + γ22)

2 + (1− ν)
(
γ211 + 2γ212 + γ222

)]
sin

( s

R

)
dsdθ, (11)

where ν = 1/2 is the Poisson ratio for the material, γij is the intrinsic in-plane strain tensor that
accounts for the curvature of the sphere, and the summation is over each sector of the retina as defined
by the cuts. The optimization of this energy was performed using a Rayleigh-Ritz type algorithm.
To compare data across retinas, all cells were mapped to a standard flat mounted retina D′ which
was constructed assuming an ideal retina with equally spaced cuts of equal length; see Fig.5(a) for a
schematic of the various mappings as well as a numerical reconstruction of a flat mounted retina.

Translatory and rotatory optic flow on the retina was generated by first computing the correspond-
ing flow on an arbitrary sphere S ′ in the far field and using geometric optics with the cornea acting
as a lens to focus the vector field onto the retina. In the jargon used within this field of research,
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(a)

(b)

(c)

Figure 5: (a) Schematic diagram of the various mappings of a flat mounted retina. In vitro measure-
ments of the position and orientation of ON-OFF-DSGCs (upper left inset figure) are mapped to a
numerically constructed flat mounted retina and a standard flat mounted retina (middle grey inset
figures). The upper right inset figure corresponds to the numerically computed reconstructed retina
colored by local strain. The bottom two inset figures correspond to the domain of parameterization
for the spherical retina as well as the spherical representation of the retina. (b) Translatory and rota-
tory optic flow in extrapersonal space generated by forward motion and cervical rotation of the head
respectively with the corresponding optical flow mapped to the retina. (c) The two best fitting optical
flows compared with the measured ON-OFF-DSGC response.

S ′ is called extrapersonal person but is equivalent to a subset of real projective space RP2, i.e., the
set of lines through the origin of the eye that lie within the visual range. In spherical coordinates
(ϕ̂, θ̂) ∈ [0, π] × [0, 2π] on S ′, the vector fields corresponding to translatory and rotatory optic flow
about a point (ϕ̂0, θ̂0) are then computed as the push forward of standard vector fields, e.g., transla-
tory and rotatory vector fields centered on the optical axis, under the appropriate Euler angle rotation
matrix; see Fig.5(b). The optical flow generated by such vector fields was then compared with the
direction sensitivity gathered from the experimental data pooled onto the standard retina; see Fig.5(c).
By optimizing the origin points (ϕ̂0, θ̂0) with respect to an L2 norm, I deduced the optical flow that
best fits the measured data; see Fig.5(c). The existence of two optimal optical flows corresponds to the
fact that there are four types of ON-OFF-DSGCs but two of the types correspond to the opposite ori-
entation of the others. Through a full three dimensional reconstruction of the mouse, we showed that
the ON-OFF-DSGCs are distributed throughout the retina to align with forward-backward motion of
the animal as well as motion along the gravitational axis.
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2.4 Noise-induced tipping in periodically forced systems

Motivated by applications with intrinsic seasonal forcing, e.g., sea ice extent [44, 45] or yearly disease
outbreaks [46], in [9] we studied the problem of characterizing noise induced tipping events in period-
ically forced systems. To do so, we focused on a system in which we could directly modify the time
scales in the problem:

dxt =
1

ε
f(xt, t) + σdWt =

1

ε

(
xt − x3t + α+A cos(2πt)

)
dt+ σdWt. (12)

Here xt ∈ R, Wt is the standard Wiener process, ε > 0, and α,A, σ ≥ 0 are parameters chosen so that
the deterministic skeleton of Eq.(12) has two stable periodic orbits separated by an unstable one. In
particular, the parameter ε represents a ratio of the characteristic relaxation time to equilibrium to the
period of the forcing and governs whether the system can be thought of as lying in an adiabatic, fast
forcing, or intermediate regime; see Fig.6(a). While the adiabatic regime has been the focus of many
studies [47–51] and in the fast forcing regime the periodicity can be removed through averaging [52,53],
the intermediate forcing regime has been the subject of few studies [54].

(a)

(b) (c)

Figure 6: (a) Schematic (ε, σ)-parameter plane with inset figures depicting tipping realizations. Black
solid (dashed) curves represent stable (unstable) solutions to the deterministic skeleton. (b) Compar-
ison between most probable transition paths, represented by red curves, and Monte-Carlo simulations
for α = 0.15 and A = 0.7. (c) Summary of most probable transition paths. Nullclines of the deter-
ministic skeleton are represented by blue curves and again black solid (dashed) curves represent stable
(unstable) solutions.

To quantify tipping events from the lower limit cycle xl(t) to the upper one xu(t), we took a path
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integral approach in which the most probable transition paths α∗ are defined as minimizers of the
Onsager-Machlup (OM) functional Iσ : A 7→ R defined by

Iσ[α] =

∫ tf

t0

(
α̇− 1

ε
f(α, t)

)2

dt+
σ2

ε

∫ tf

t0

∂f

∂x
(α, t)dt, (13)

where A = {α ∈ H1([t0, tf ];R) : α(t0) = xl(t0), α(tf ) = xu(tf )} [55, 56]. This functional appears as
the argument of an exponential function when formally constructing the probability density on A and
consists of the standard Freidlin–Wentzell (FW) functional [57] with an additional term measuring the
local expansion or compression of the vector field along a path α ∈ A. This additional term formally
arises when using Girsanov’s theorem to compute the Radon-Nikodym derivative of the Wiener measure
with respect to the measure corresponding to the process generated by Eq.(12) [58,59]. Typically, this
additional term is discarded assuming σ ≪ 1 and, using essentially a Γ-convergence argument, we were
able to prove that the FW functional is indeed the limiting functional as σ → 0 with ε fixed. However,
the FW functional is not necessarily appropriate for this problem since minimizers are not unique –
they can track the unstable limit cycle at no cost – and in the intermediate forcing regime σ2/ε can
be O(1). Consequently, much of the work in [9] focused on studying what role the additional term in
the OM functional plays in determining the most probable transition paths.

To compute minimizers of Iσ we implemented a gradient flow ∂u
∂s = − δIσ

δu [u] with artificial time s.
The stationary points of this gradient flow were compared with Monte-Carlo simulations of Eq.(12)
and were in excellent agreement before crossing the unstable limit cycle; see Fig.6(b). In Fig.6(c), the
most probable transitions paths were computed for various parameter values. The key observation
from these results is that the transition from the lower to upper limit cycle is essentially independent
of σ and occurs in a region in which the vector field is locally expansive. Heuristically, the bottlenecks
through which the most probable transition path traverses can be understood as paths along which
the integrand of Iσ is locally minimized; these occur when the nullcline intersects the lower limit cycle.
Along the lower limit cycle, this result provides a deterministic indicator for regions in phase space in
which the system is most susceptible to tipping.

2.5 Free boundary problems in polygonal domains

In [10], we studied a free boundary problem with a specific intent on analyzing the behavior of the
free boundary near Neumann corner points. The specific free boundary problem we considered is
variational with a corresponding functional J : K 7→ R+ defined by

J [v] =

∫

Ω

(
|∇v|2 + λ2(v)

)
dx, (14)

where Ω ⊂ R2 is a bounded, convex domain and for λ1 > λ2 > 0 the function λ : R 7→ R+ is defined
by

λ(v) =

{
λ1, v > 0

λ2, v ≤ 0
.

The admissible set for this problem is defined by K = {v ∈ H1(Ω) : v|S = u0} where v0 ∈ H1(Ω)
and S ⊊ Ω. It can be shown by computing the variational derivative that minimizers of J satisfy the
following conditions: (i) ∆u = 0 on {u > 0}⋃{u < 0}, (ii) u = u0 on S, (iii) the normal derivative
satisfies ∂u

∂ν = 0 on N = ∂Ω \ S, and (iv) on the free boundary Γ = ∂{u > 0},
∣∣∇u+

∣∣2 −
∣∣∇u−

∣∣2 = λ2
1 − λ2

2, (15)
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(a) (b)

(c) (d)

Figure 7: Contour plots of numerical solutions to the free boundary problem with the solid red curve
corresponding to the numerical approximation of the free boundary. The upper left corner of each
domain has Neumann boundary conditions on either side of the corner point. We illustrate the behavior
of the minimizer when the free boundary lies to the right and left of the corner point for (a-b) acute
angles and (c-d) right angles. In each case, the varying behavior of the free boundary was controlled
by the Dirichlet boundary conditions on the bottom of the polygon.

where u+ = max{0, u} and u− = max{0,−u} [60]. In this derivation, the Neumann boundary condi-
tions on N arise as ‘natural boundary conditions’ and the gradient jump condition results from the
fact that the distributional derivative of λ2(v) is a delta function of mass λ2

1 − λ2
2.

The challenge with numerically solving this problem is that knowledge of the free boundary Γ
is needed a priori. To ameliorate this problem, we defined a family of self similar transition layers
ϕε ∈ C1,1(R; [λ2

1, λ
2
2]) satisfying ϕε = ϕ1(v/ε), ϕε(v) → λ2(v) pointwise, ϕ′

ε → (λ2
2−λ2

1)δ(v) in the sense
of distributions, and we considered the relaxed functional Jε : K 7→ R+ defined by

Jε[v] =

∫

Ω

(
|∇v|2 + ϕε(v)

)
dx. (16)

Using a Γ-convergence type argument, we proved that local minimizers of Jε converge with respect
to the strong topology in H1 to minimizers of J and thus the zero level set of minimizers of Jε
well approximate the free boundary Γ. Finally, the minimizers of Jε were numerically computed as
the stationary points of the gradient flow vt = 2∆v − ϕ′

ϵ(v) with appropriate boundary conditions.
Specifically, the numerical algorithm consisted of a standard centered finite difference scheme in space
with ghost points to enforce the Neumann boundary conditions and an adaptive fourth order scheme in
time. In Fig.7, the interaction of the numerically computed free boundary is illustrated for acute and
right Neumann corner points; the obtuse case did not yield any nontrivial behavior. These numerical
experiments indicate that the orthogonality condition resulting from the Neumann boundary conditions
generates interesting behavior near acute or right angles. In particular, the free boundary, as it
approaches a right angle, becomes tangent to the other side of the polygon and, as it traverses through
the corner, travels a significant distance very quickly. On the other hand, as the free boundary
approaches an acute corner point, there is a ‘forbidden’ region in which the free boundary does not
enter due to the need for orthogonality and the energy constraints.
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2.6 Noise-induced tipping in piecewise smooth systems:

Motivated by conceptual climate models with discontinuous vector fields, see for example [61–63],
in [11] we developed a mathematical framework for determining most probable transition paths in
stochastic differential equations with a piecewise smooth drift. Specifically, we considered a generic
system of the form

dxt = F(xt)dt+ σdWt, (17)

where x = (x,y) ∈ Rn, x ∈ R, y ∈ Rn−1, σ ∈ R, W = (W1, . . .Wn) is an n-dimensional Wiener
process, and F : Rn \ {x = 0} 7→ Rn is defined by

F(x) =

{
F+(x), x > 0

F−(x), x < 0
. (18)

For the deterministic skeleton, the dynamics in the regions S± = {x ∈ Rn : ±x > 0} is clear while the
dynamics on the switching manifold Σ = {x ∈ Rn : x = 0} is not well defined and in many applications
is typically imposed either through Fillipov’s convex combination method [64–66] or through more
sophisticated techniques [67–69]. A natural question is the role of noise in determining not only
transition paths but also the dynamics near attracting (ΣA) and repelling (ΣR) subsets of Σ as well as
crossing regions Σ± from S+ to S− and from S− to S+; see Fig.8 for a schematic diagram illustrating
the possible dynamics near Σ.

(a) (b) (c)

Figure 8: Generic phase planes illustrating possible behavior of the dynamical system near Σ. De-
pending on the normal component of the vector field on either side of Σ, subsets of Σ can be classified
as (a) crossing, (b) attracting, or (c) repelling.

To address these questions, we took a path integral approach with a mollified version of the vector
field and rigorously considered the convergence of minimizers of a rate functional as the width of
the mollification parameter goes to zero. Specifically, for ε > 0 and x0,xf ∈ Rn, we considered the

sequence of Freidlin-Wentzell functionals I
(t0,tf )
ε : A 7→ R+ defined by

I
(t0,tf )
ε [α] =

∫ tf

t0

∣∣α̇(t)− ε−1ζ(α(t)/ε) ∗ F(α(t))
∣∣2 dt, (19)

where ζ is a smooth, unit area function compactly supported on [−1, 1], A = {α ∈ H1([t0, tf ];Rn) :
α(t0) = x0 and α(tf ) = xf}, and α denotes the first component of α. Assuming mild growth con-
ditions on F as well asymptotically inward pointing flow, we used the direct method of calculus of
variations to prove the existence of minimizers for this functional. Namely, by computing the Γ-limit
of Iε as ϵ → 0, we proved that minimizers of Iε weakly converge in the H1 topology to a minimum of
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the functional I : A 7→ R+ defined by

I(t0,tf )[α] =

∫

I[α]
∥α̇(t)− F(α(t))∥2 dt+

∫

IΣ[α]
min
λ∈[0,1]

{[
λF+

1 (0,β(t)) + (1− λ)F−
1 (0,β(t))

]2

+
∣∣∣β̇ − λG+(0,β(t))− (1− λ)G−(0,β(t))

∣∣∣
2
}

dt,

(20)

where we have decomposed the path and vector fields into components as α(t) = (α(t),β(t)), F =
(F,G), and the intervals of time are defined by I[α] = {t : α(t) /∈ Σ} and IΣ[α] = {t : α(t) ∈ Σ}.
Not surprisingly, this functional consists of the standard Freidlin-Wentzell functional for times when
α(t) ∈ S±, but on Σ the drift is replaced by a nontrivial convex combination of F. This result is
interesting in that the limiting rate functional is independent of the chosen mollifier. Moreover, the
most probable path may track the Filippov dynamics with no additional contribution on ΣA and ΣR.
That is, on ΣA and ΣR, the minimizer of I(t0,tf ) will satisfy β̇ = λG+(0,β(t) + (1 − λ)G−(0,β(t))
with λ given by

λ(β(t)) =
F−
1 (0,β(t))

F−
1 (0,β(t))− F+

1 (0,β(t))
, (21)

which is precisely the definition of the Filippov convex combination. This result indicates, at least in
applications in which the discontinuous vector field arises via approximation of a smooth vector field,
the Filippov dynamics is the correct dynamics to impose on Σ.

We also demonstrated the utility of the derived rate functional through two case studies. The first
consisted of a planar piecewise-linear system in which we could explore the interaction of most probable
transition paths with ΣA and ΣR; see Fig.9(a-b). It is interesting to note for this case study, in the
attracting, both the most probable transition path and the Monte-Carlo simulations track ΣA. In
contrast, in the repelling case, the most probable transition paths are not unique, but the Monte-Carlo
simulations track a local minimum which does not slide along ΣR. The second case study we considered
was a one-dimensional periodically forced piecewise-linear system; see Fig.9(c-d). In this case study
there was remarkable agreement between the Monte-Carlo simulations and the most probable transition
path.
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Figure 9: (a-b) Distribution of tipping events between fixed points for a piecewise-linear autonomous
system compared with most probable paths (red and black curves) for parameter regimes in which
(a) ΣA ̸= ∅ and (b) ΣR ̸= ∅. (c-d) Most probable transition paths (black curve) between limit cycles
for a piecewise-linear one dimensional system with periodic forcing overlaid on the probability density
generated by Monte-Carlo simulations (mean magenta curve). The dark (light) grey region corresponds
to the basin of attraction for the upper (lower) limit cycle.
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3 Ongoing and Future Research

Since the beginning of my mathematical career, my research has primarily focused on studying varia-
tional problems with multiple scales. In my ongoing research, I plan to continue this line of research
with specific applications to noise-induced tipping in stochastic differential equations. I have also be-
come interested in the study of dynamical systems on adaptive networks. Specifically, I am interested
in the control of networks in which the individual nodes modify the topology of the network in response
to the dynamics, e.g., spread of infectious diseases, spread of ideologies. I have found that my research
interests tend to evolve into different application areas as my expertise grows, and it is difficult to
predict in the long term, i.e., greater than five years, what areas of research I will pursue. However, in
the following subsections I expand upon my immediate research plans.

3.1 Noise-induced tipping

As an extension of my work in [9, 11], I will continue developing a theory for understanding noise-
induced transitions in stochastic differential equations (SDEs) with multiple scales. Specifically, I
will focus on understanding most probable transition paths for SDEs on Rn conditioned to transition
between states x0 and xf over the interval of time [t0, tf ]:

{
dx = F(x)dt+ σdWt

x(t0) = x0 and x(tf ) = xf

, (22)

where F : Rn 7→ Rn is a smooth vector field, σ > 0, and Wt is standard n-dimensional Brownian
motion. In this formulation, most probable transition paths α ∈ H1([t0, tf ];Rn) from state x0 to xf

are defined to be minimizers of a higher dimensional version of the Onsager-Machlup (OM) functional
given by

Iσ[α] = IFW[α] + σ2IOM2[α] =

∫ tf

t0

∥α̇(t)− F(α(t)) ∥2dt+ σ2

∫ tf

t0

∇ · F(α(t))dt. (23)

As was discussed in Section 4 for the one dimensional case, this functional is the sum of the FW
rate functional IFW penalizing deviations of the path from the flow and an additional integral σ2IOM2

measuring the total expansion or compression of the flow along a path. Ultimately, the competition
between IFW and σ2IOM2 selects the optimal path, but formally the contribution of σ2IOM2 is negligible
in the small noise limit. In particular, if we let ασ denote a sequence of minimizers for Iσ, then (up to a
subsequence) it can be proved that there exists α0 such that limσ→0 ∥ασ − α0∥H1 = 0 and α0 minimizes
IFW [70]; that is, minimizers of Iσ are well approximated by minimizers of the FW functional in the
vanishing noise limit. However, this argument for discarding the contribution of IOM2 may not hold
when considering problems with additional small scale parameters. In the following research projects,
I will study various problems in which the multiple scales in the problem are relevant and in which
a rigorous theory needs to be developed to determine if the most probable transition paths can be
completely described by minimizers of IFW alone.

3.1.1 Most probable transitions for SDEs with piecewise-smooth drift

As a direction extension of [11], consider Eq.(22) with a discontinuous vector field of the following
generic form:

F(x) =

{
F+(x), h(x) > 0

F−(x), h(x) < 0
, (24)

where F± : Rn 7→ Rn and h : Rn 7→ R are smooth and the so-called switching manifold Σ = h−1(0)
is a smooth simply connected co-dimension one submanifold of Rn. As in [11], if we let δε be a delta
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sequence and Fε = F ∗ δε be a mollified version of F, we obtain a smoothed out version of the OM
functional given by

Iσ,ε[α] =

∫ tf

t0

∥α̇(t)− Fε(α(t)) ∥2dt+ σ2

∫ tf

t0

∇ · Fε(α(t))dt. (25)

The effect of this mollification is the discontinuity Σ is replaced by a mollified region of characteristic
width ε centered on Σ. While the vector field Fε is smooth in the mollified region, the directional
derivatives of Fε normal to Σ is unbounded in the limit ε → 0. Due to the singular nature of this
problem, there are a number of anticipated challenges that will arise in the analysis of this system
which are as follows.

Challenge 1: This problem has two small parameters σ and ε, and if α∗
σ,ε denote minimizers of Iσ,ε,

then, generically,

lim
σ→0

lim
ε→0

ασ,ε ̸= lim
ε→0

lim
σ→0

ασ,ε and lim
σ→0

lim
ε→0

Iσ,ε[ασ,ε] ̸= lim
ε→0

lim
σ→0

Iσ,ε[ασ,ε]. (26)

In fact, from dimensional analysis, ∇ · Fε scales like ε−1 and, thus there are different scaling regimes
σ2 ≪ ε, σ2 ∼ ε, σ2 ≫ ε, and the behavior of minimizers is expected to be different in these scaling
regimes.

Challenge 2: Given a sequence ασ,ε of minimizers of Iσ,ε, it must be shown that any proposed
limiting functional I0,0 must satisfy the property that if α∗

σ,ε minimizes Iσ,ε and α∗
σ,ε → α∗

0,0 then
Iσ,ε[α

∗] → I0,0[α
∗
0,0].

Challenge 3: Different limiting functionals which arise in various asymptotic regimes could depend
on the specific properties of the chosen δε sequence, i.e., the smoothing. This would have practical
implications for physical systems and, in particular, conceptual climate models.

Challenge 4: The distribution of tipping events for the SDE with discontinuous drift given by
Eq.(24) should concentrate around minimizers of the limiting functional. Again, this could depend on
the δ-sequence chosen.

A natural starting point to address the above issues is to consider the scaling ε = σp, where p > 0,
and study the convergence of minimizers of the functional Iσ,σp using Γ-convergence. Recall, we say
Iσ,σp Γ-converges to Ip0 if the following properties are satisfied [71,72]:

1. Liminf inequality: For all sequences of curves ασ ∈ H1([t0, tf ];Rn) satisfying ασ → α0,

Ip0 [α0] ≤ lim inf
σ→0

Iσ,σp [ασ].

2. Recovery sequence: For all α0 there exists a sequence ασ ∈ H1([t0, tf ];Rn) such that ασ → α0

and
Ip0 [α0] = lim

σ→0
Iσ,σp [αp].

These two conditions ensure that Iσ,σp has a common lower bound, the lower bound is optimal, and
that the limiting functional is precisely this lower bound. Note that in this definition there is no
mention of either the type of convergence, e.g., strong or weak, nor the function space α0 is defined
on. This is intentional since, in proving a Γ-limit, some notion of compactness is needed and thus it is
necessary to often work in the weak topology. Moreover, α0 may lie in a space with lower regularity.
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The Γ-limit is the natural notion of a limiting functional in the sense that under the mild condition
of equi-coercivity of Iσ,σp , if α∗

0 minimizes Ip0 then there exists a sequence α∗
σ that minimizes Iσ,σp and

satisfies α∗
σ → α∗

0 [71, 72]. That is, the asymptotic limit points of Iσ,σp are exactly the minimizers of
Ip0 . However, one of the challenges with proving a Γ-limit is that the target limiting functional must
be formed from an educated guess based on an analysis of minimizers. In the system of interest, it is
natural to expect that the appropriate Γ-limit will correspond to the standard FW functional except
for intervals of time on which the curve tracks Σ. This motivates the following tasks.

Task 1: Construction of a recovery sequence. To construct a recovery sequence for a given curve
α0 it is necessary to calculate the optimal transition through the mollified region. If we introduce the
conjugate momentum φ = α̇ − Fε(α), it follows that in the mollified region minimizers of Iσ,ε satisfy
the following system of equations [57,73]:

{
α̇ = φ+ Fε(α)

φ̇ = −∇Fε(α)φ+ σ2∇(∇ · Fε(α))
. (27)

Since spatial derivatives of F scale like ε−1 = σ−p in the mollified region, this system can be interpreted
as a fast-slow system. This observation allows the use of geometric singular perturbation theory to
compute the optimal transition [74]. Specifically, in the mollified region, the optimal transition will
predominantly track the flow on the slow manifold, if it exists, after an initial short transient time spent
on a fast fiber. However, scaling arguments indicate the structure of the slow manifold will depend on
the value of p and in particular the slow manifolds are given approximately by the following locus of
points in phase space: 0 = ∇(δ1 ∗F(x))φ−∇(∇ · δ1 ∗F(x)) if p = 2, i.e., σ2 ∼ ε; 0 = ∇(δ1 ∗F(x))φ if
p < 2, i.e., σ2 ≪ ε; and 0 = ∇(∇·δ1∗Fε(x)) if p > 2, i.e., σ2 ≫ ε. Regardless of the scaling regime, the
recovery sequence will transition through the mollified region along a fast fiber or by a path restricted
to the slow manifold.

Task 2: Computation of limiting rate functional. The explicit form of the limiting functional
will depend on the value of the functional computed along the recovery sequence. The computation
of the most probable path means optimizing the rate functional over the transition paths on the
slow manifold in the mollified region. This computation is simplified by the fact that Eq.(27) is a
Hamiltonian system with Hamiltonian H(x, φ) = 1

2⟨φ,φ⟩ + ⟨Fε(x), φ⟩ − σ2∇ · Fε(x) through which
the Lagrangian is related via a Legendre transformation. The fact that this system is Hamiltonian
implies that the optimal paths are further restricted to flowing on surfaces on which the Hamiltonian
is constant. In the special case in which the transition path is between fixed points, this implies the
optimal path will be a heteroclinic orbit of the Hamiltonian system. These facts will allow us to
exploit the Hamiltonian structure to compute the rate functional along optimal transitions on the slow
manifolds in the various scaling regimes.

Task 3: Liminf inequality. The challenge with rigorously proving the liminf inequality is to show
that the recovery sequence is optimal. This work involves using functional analytic tools, namely weak
convergence and Sobolev embedding theorems, to rigorously prove the optimal lower bound, an area
in which I have previous experience [1, 2, 7, 10,11].

The above tasks will address the first two challenges and form one area of my main mathematical
research. However, the third and fourth challenges are more nuanced and problem specific but are more
appropriate research problems for undergraduate and master’s students to tackle. Specifically, in low
dimensional models these questions can be addressed, at least numerically, in a case by case manner
and provide an excellent source of problems in which both undergraduate and master’s students can
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contribute. Indeed, I am currently mentoring Grace Hofmann (Master’s student, Wake Forest) on a
project studying a piecewise smooth version of the Wilson-Cowan equations [75].

3.2 Most probable transition paths for SDEs with non-autonomous drift

Consider Eq. (22) with a time dependent parameter:

{
dx = F(x; Λ(t))dt+ σdWt

x(t0) = x0 and x(tf ) = xf

, (28)

where Λ : R 7→ R is a smooth monotone increasing function that is asymptotically constant, i.e.,
there exists Λ± ∈ R such that lim→±∞ Λ(t) = Λ±. In climate applications, the function Λ is often
called a ramp and is a proxy for anthropogenic effects that cause sudden rapid transitions between
the parameter values Λ±. In the absence of noise, the sudden transition between stable states for the
dynamics of Eq.(28) in response to Λ is the central study of rate induced tipping [76–81]. The challenge
with adapting the FW theory of large deviations directly to Eq.(28) is that rigorous results concerning
the concentration of tipping events around minimizers of Iσ only hold in autonomous systems [57].
There are some exceptions to this statement, specifically in periodically forced systems with slow
forcing [47–51,82–85] and periodically forced systems with small noise [9, 54,86–90], but these studies
rely on the system being one dimensional and the complication that the system is non-autonomous is
effectively removed by considering the problem in a cylindrical phase space.

The approach I will take to study this problem is to rewrite the system as an autonomous system
by exploiting the structure of the ramp:





dx = F(x; r)dt+ σ1dWt

dr = Λ′(Λ−1(r))dt+ σ2dWt

x(t0) = x0 and x(tf ) = xf

r(t0) = Λ− and r(tf ) = Λ+

. (29)

Note that the deterministic skeleton of this system is autonomous with fixed points satisfying the
equation F(x;λ±) = 0. That is, the non-autonomous part of the system has been ‘compactified’ in the
sense that compact invariant sets such as equilibria now describe the long time behavior of the system.
The process of compactification described above is not restricted to ramp functions but is more broadly
applicable to other forms of non-autonmous forcing [91]. Assuming σ1, σ2 ≪ 1, the contribution from
σ2IOM2 is negligible and thus the FW functional corresponding to Eq.(29) can be expressed in the
form:

Iσ1,σ2 [α, β] =
I1[α, β]

σ2
1

+
I2[α]

σ2
2

=

∫ tf

t0

∥α̇− F(α;β)∥2
σ2
1

dt+

∫ tf

t0

|β̇ − Λ′(Λ−1(β))|2
σ2
2

dt, (30)

where the path the ramp takes is a curve β : [t0, tf ] 7→ R satisfying β(t0) = Λ− and β(tf ) = Λ+. This
is again a variational problem with multiple scales and the following challenges are anticipated in its
analysis.

Challenge 5: As in Chalenges 1-2, we expect minimizers will have different behaviors in different
scaling regimes, i.e., σ2 ≪ σ1, σ2 ∼ σ1, and σ1 ≪ σ2. Each of these regimes has different physical
import and correspond to weak noise on the ramp, balanced noise between the drift and the ramp,
and weak noise on the drift, respectively. Again, to compute a Γ-limit a single small parameter is
introduced by defining σ2 = σp

1 for some p > 0.
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Challenge 6: There is a third potential small scale parameter in Iσ1,σ2 , namely the characteristic
time scale on which the ramp transitions between states defined by τ = (∥Λ′∥∞)−1. The scaling
regions discussed in challenge 5 implicitly assumed that σ1, σ2 ≪ τ and τ = O(1). However, for
very fast tipping, i.e., τ ≪ 1, there are nine additional parameter regimes of interest: σ1 ∼ τ ≪ σ2,
σ2 ≪ σ1 ∼ τ1, σ2 ∼ τ ≪ σ1, σ1 ≪ τ ∼ σ2, σ1 ≪ τ ≪ σ2, σ2 ≪ τ ≪ σ1, σ1 ≪ τ ≪ σ1, σ2 ≪ τ ≪ σ1,
and τ ≪ σ1 ∼ σ2.

Task 4: Optimal paths in the regime σ2 ≪ σ1. In this scaling regime we expect that optimal
paths will consist of minimizing the first term in the integrand of Iσ1,σ2 subject to the constraint
β̇ = Λ′(Λ−1(β)), i.e the time dependant parameter exactly follows the ramp. Again, the Γ-limit
provides a natural technique for proving such a result. Note, I am familiar with the techniques needed
to prove such a Γ-limit as they arise in elasticity theory when considering an isometry constraint [1–4].

Task 5: Optimal paths in the regime σ1 ≪ σ2. In this scaling regime the first term in the
integrand of Iσ1,σ2 dominates. However, in contrast with Task 4, optimal paths cannot satisfy the
constraint α̇(t) = F(α;β) and undergo tipping as this equation is only satisfied if the path follows the
deterministic dynamics. Nonetheless, the divergence of σ−2

1 I1 can be ameliorated by considering the
scaled functional σ2

1Iσ1,σ2 = I1 + σ2
1σ

−2
2 I2 which provides the correct framework for proving a Γ-limit.

In the Γ-limit, we expect that the contribution σ2
1σ

−2
2 I2[β] will be negligible and thus, in some sense,

the ramp β can be chosen arbitrarily. In particular, the optimal ramp can be abstractly considered
as an optimal control selected so that the vector field F(·;β) allows α to tip while at the same time
tracking the flow as closely as possible.

Task 6: Optimal paths in the regime σ2 ∼ σ2. In this scaling regime there is no natural notion
of a Γ-limit since both σ−2

1 I1 and σ−2
2 I2 are comparable. While in Tasks 4-5 I am proposing a unified

theory, in this scaling regime the analysis is problem specific. However, in low dimensional dynamical
systems, the optimal paths in this regime can be computed numerically through a gradient descent
algorithm and compared with Monte-Carlo simulations. This type of analysis will be applicable in
conceptual climate models in which the uncertainty in the ramp parameter and the underlying vector
field are equivalent.

Task 7: Optimal paths in the regime τ ≪ 1. To study the nine different scaling regimes a single
small scale parameter must be introduced, e.g., σ2 = σp

1 , τ = σq
1, and the appropriate Γ-limits must be

computed. However, since τ will appear as a prefactor in front of Λ′ in Iσ1,σ2 and not on the highest
order derivatives, we can use information from the Γ-limits in Task 6 to simplify the analysis in some
of these nine regimes. More precisely, the Γ-limits computed in Task 6 are stable under perturbations
in the sense that they are continuous with respect to strong convergence in H1 [71,72]. Consequently,
the various Γ-limits in these nine scaling regimes can be computed as further Γ-limits of the functionals
computed in Task 6.

The above tasks are challenging and will form another branch of my main mathematical research.
However, again in low dimensional systems, this area of research is ammenable to master’s and PhD
students. Indeed, I am currently collaborating with Katherine Slyman (PhD student, UNC Chapel Hill)
and Nicholas Corak (PhD student, Wake Forest University) on two projects applying these techniques
to a simple model of hurricane formation [92] and the El-Nino Southern Oscillation [93].
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(a) (b) (c) (d)

Figure 10: Illustration of mathematical frameworks for modeling the spread of infections diseases. (a)
Agent based model coupling spatial dynamics with the spread of the disease. (b) Static network with
the spread of the disease propagating along edges. (c) Compartment model with the disease spreading
between the various population densities. (d) Adaptive network in which the population and edge
densities are incorporated into compartment models.

3.3 Dynamics on adaptive networks

There are a large number of mathematical models for the spread of infectious diseases whose efficacy
and validity vary over a wide range of spatial and temporal scales. Specifically, adapting terminol-
ogy from condensed matter physics, typical mathematical models range from agent based models at
the microscale [94], network models at the mesoscale [95, 96], and finally to mean-field compartment
models at the macroscale [97–101]; see Figure 10(a-c). Following the pioneering of Kermack and
McKendrick [102], the unifying thread in all of these models is that members of the population are
categorized depending on their status, e.g.,, susceptible (S), infected (I), and recovered (R), and the
dynamic evolution of each individual status is modeled either as a stochastic or purely deterministic
process. The benefit of adopting a particular modeling framework ranges from the ability to simulate
every minute detail of the disease at the agent based level to analyzing a small system of ordinary or
partial differential equations at the compartment model level. In particular, compartmental models
are particularly amenable to mathematical analysis as standard tools from dynamical systems can be
used to categorize underlying mechanisms which dictate the qualitative behavior of the spread of the
disease. Moreover, standard compartmental models such as the SIR model can be used as scaffolding
onto which additional compartments can be added, e.g.,, exposed (E), vaccinated (V ), hospitalized
(H). However, while compartment models are useful predictive tools on a short timescale, on longer
timescales classical models are unable to capture several realistic phenomenon such as multiple waves
of infections and the feedback between human behavior and the spread of the disease. Moreover, it
is difficult to incorporate non-pharmaceutical interventions such as sheltering in place, testing, and
contact tracing into standard compartment models. Finally, in the analysis of many epidemiological
models, there is an overemphasis on the ability of the basic reproduction number R0 to predict the
severity of a disease.

To address some of these questions, during the 2021-2022 academic year, and in collaboration
with Hwayeon Ryu (Elon University), I was funded by a NSF Center for Undergraduate Research in
Mathematics (CURM) minigrant to form a team of students in order to study the control of infectious
diseases on adaptive networks. This collaboration was a direct follow up to my student’s work in [13]
as well as some projects I was involved in as part of a summer school I co-led1. The approach we
took was to develop and analyze a hybrid model which bridges network models (mesocale) with ODE
models (macroscale) and implement an optimal control strategy to minimize the economic impact as
well as the spread of the disease.

As an example of how edge and population densities can be modeled as a system of ODEs, consider
the classic SIR model with the edge density state variables [SS], [SI], [SR], [II], [IR], and [RR]

1https://sinews.siam.org/Details-Page/virtual-summer-schools-can-we-make-them-work
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introduced yielding the following system of differential equations:

d[S]

dt
= − β

N
[SI],

d[I]

dt
=

β

N
[SI]− α[I],

d[R]

dt
= α[I],

d[SS]

dt
= − β

N
[SSI],

d[SI]

dt
=

β

N
([SSI]− [ISI])− α[IS],

d[SR]

dt
= − β

N
[RSI] + α[IS],

d[II]

dt
=

β

N
([IS] + [ISI])− 2α[II],

d[IR]

dt
=

β

N
[RSI] + α (2[II]− [IR]) ,

d[RR]

dt
= α[IR],

(31)

where [ABC] denotes the average number of triplets with a given sequence of states A,B,C ∈ {S, I,R};
see Figure 10(d) for an illustration of a network with these state variables. The first three equations in
this model are the standard SIR equations while the remaining equations correspond to the conversion
of various edge types as nodes are infected or recover. This system of equations is often closed by using
a counting argument to approximate the number of triple links by

[ABC] =
q

k

[AB][BC]

[B]
, (32)

where k is the average degree of the nodes and q is the mean excess degree [96]. The approach of
introducing edge densities as state variables has been used to model the spread of a disease on a
network in which edges can rewire or delete edges in response to not only the state of the disease but
the topology of the network [103]. The benefit of this framework is that hybrid models can exhibit
a range of phenomenon such as periodic oscillations [95] and hysteresis [104–106] which are absent in
standard compartment models.

In our work, we developed and analyzed an ODE system that in addition to modeling the dynamics
of the relevant population densities also modeled the temporal evolution of the edge densities in the
network. Specifically, we allowed for the pausing of edges in response to the spread of the disease to
mimic sheltering in place and treated the pausing rate as a control. While we were able to address
some of our initial questions, numerous further questions arose out of this work such as:

• How do we best implement pausing of a network in order to minimize spread of the disease while
maximizing the economic output of the network?

• How should contact tracing be modeled given that such a process would necessarily look beyond
direct connections, i.e., edges?

• How do we account for changes in the topology of the network as pausing is implemented?

While my work with students this past year has been fruitful, to address these questions there are a
number of further challenges and tasks that have arisen out of our work that will be part of the focus
of my ongoing research.

Challenge 7: The approximation for [ABC] given in (32) assumes a homogeneous static network
containing no triangles; see Fig.11(a). In the case of an adaptive network, a time varying moment
closure is necessary to account for the change in the topology of the network. Moreover, such a
moment closure must account for more sophisticated measures of the topology of the network, e.g., the
clustering coefficient.
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(a) (b)

Figure 11: Illustration of possible topologically equivalent ways that (a) three and (b) four nodes could
be connected in an undirected network.

Challenge 8: The excess degree which arises in the moment closure is typically approximated by
q = k − 1. However, we know from the “friendship paradox”, i.e., your friends have on average more
friends than you, that q ≥ k − 1 and depends on the structure of the network [107]. This seemingly
paradoxical statement arises from the fact that, when computing the expectation, selecting a node is
drawn from a uniform distribution, while the selection of a non-adjacent connected node is drawn from
a different distribution. Moreover, q will also be time dependent in adaptive networks.

Challenge 9: In applications in which contact tracing is implemented, it is necessary to derive
governing equations for triple links which will in turn require moment closure approximations for the
quad links of which there are six possible topologically equivalent types [108]; see Fig.11(b). Again,
with adaptive networks such moment closures will necessarily be time dependent.

Challenge 10: In order to determine optimal control strategies for the types of models incorporating
edge dynamics discussed above, a high dimensional system of differential-algebraic boundary value
problems must be solved. For example, it follows from Pontryagin’s maximum principle that if we
wished to control Eq.(31) with a single control function then a system of 18 differential equations and
one algebraic equation would have to be solved for the state, costate, and control.

Task 8: Derivation of governing equations from mean field approximation. To address
aspects of Challenge of 8 and 9, it is necessary to derive the hybrid differential equations directly from
the Markov chain models which operate at the mesoscale. That is, Markov chain models typically
begin by defining a status for each node, e.g., S, I,R, and a transition probability PAB(∆t) for a node
to change status from A to B in an interval of time ∆t > 0. Typically, PAB scales like ∆t and depends
on the status of nearest neighbors if it is an infection probability or an intrinsic timescale if it is a
probability corresponding to recovery. The mean field approximations are then derived by computing
the expected value for the number of nodes of a certain status and considering the limit ∆t → 0 to
obtain a system of ODEs [109,110]. For an adaptive network, it is further necessary to define transition
probabilities for the entries of the adjacency matrix of the network itself, and thus when computing
mean field approximations, additional state variables will need to be introduced to form a closed
system of ODEs. For example, assuming a moment closure approximation of the form [SI] = k[S][I]
and assuming pausing and reconnecting of edges is proportional to the number of infected nodes, we
obtain the following version of Eq.(31) in the mean field limit

˙[S] =
βk

N
[S][I],

˙[I] =
βk

N
[S][I]− α[I],

k̇ = η(N − [I])(k − k)− w[I]k,

(33)

where k, k are the average degrees of the static and adaptive network respectively, and η, w > 0. Note
that this is essentially the standard SIR model with an additional equation for the temporal evolution
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of the average degree. The weakness with this derivation is that the moment closure [SI] = k[S][I]
assumes a fully connected network and given that the topology of the network is changing, a more
realistic model should use more precise moment closure approximations. The task is then to derive
governing equations for quantities such as k, q, and the clustering coefficient ϕ (see Task 9) which
arise in higher order moment closures. This work will require careful analysis of the expected value
computed from the transition probabilities.

Task 9: Derivation and implementation of moment closure approximations for time vary-
ing topologies. To address aspects of Challenges 7-9, it is necessary to consider the temporal evo-
lution and validity of the moment closure approximation given by Eq.(32) which assumes that all
connections are linear; see left diagram in Fig.11(a). For a network with adjacency matrix A, the
clustering coefficient defined by

ϕ =
Tr(A3)∑

i,j(A
2)ij − Tr(A2)

, (34)

measures the ratio of the the number of triangles in a network to the number of linear triple links and
one proposed moment closure that accounts for triangles is given by

[ABC] =
q

k

[AB][BC]

[B]

(
(1− ϕ) + ϕ

k[B][C][AC]

([BB][C] + [B][CC])[A][BC]

)
. (35)

This moment closure approximation is derived by separately computing the moment closure approxi-
mations for a network with no triangles and one consisting entirely of triangles and considering their
convex combination with ϕ the weighting parameter [111]. To address Challenge 9, it is necessary to
derive similar moment closure approximations for the six possible topologically equivalent ways that
four nodes can be connected; see Fig.11, and compute the appropriate convex combination of these
approximations. Moreover, connected with Task 8, ODEs must be derived for the temporal evolution
of the weights arising in this combination.

Task 10: Implementation of optimal controls. In conjunction with Tasks 9 and 10, optimal con-
trol strategies will be implemented on the resulting systems. Specifically, we will consider minimizing a
functional consisting of the cost of treatment of a disease and the economic output of the network. As
discussed in Challenge 10, using the Pontryagin maximum for a generic cost functional will result in an
intractable system for which it is not clear what can be concretely deduced regarding optimal policies
beyond what is learned from the results of specific numerical simulations. As a starting point we will
work with a functional that is linear in the cost of treatment as well as the labor, i.e., proportional to
number of infected nodes and the number of edges. This structure of the functional will allow for the
use of bang-bang controls, i.e., piecewise constant functions, for which direct analysis will be simplified.

These tasks will form the final branch of my immediate research goals. This area of research is
also particularly amenable to collaboration with undergraduate students. Indeed, two of my former
undergraduate students Minato Hiraoka (beginning PhD student at Northwestern University) and
Sarah Ruth Nicholls (beginning PhD student at Rice University) as well as Malindi Whyte (rising
senior) have contributed to aspects of this research. Specifically, they worked on a project studying
optimal control of a simple SIS disease that will lead to a publication and their work has motivated
much of the more nuanced challenges/tasks that I will pursue.
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