Homework 1

Analysis

Due: January 22, 2018

1. Give an $\varepsilon - \delta$ proof that for all $x \in [-1, 1]$:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

2. Prove that for all $x, y, z \in \mathbb{R}$:

$$|x - y| \ge ||x - z| - |z - y||.$$

3. Let a_n be a sequence in \mathbb{R} satisfying for all $n \in \mathbb{N}$

$$|a_{n+1} - a_n| < \frac{1}{n}.$$

Is a_n a Cauchy sequence? Prove or give a counterexample.

4. Let a_n be a sequence in \mathbb{R} satisfying for all $n \in \mathbb{N}$

$$|a_{n+1} - a_n| < \frac{1}{n^2}$$

Is a_n a Cauchy sequence? Prove or give a counterexample.

5. Let a_n be a sequence in \mathbb{R} . Suppose there are numbers k, 0 < k < 1 and C > 0 such that

$$|x_{n+1} - x_n| \le Ck^n$$

for all $n \ge 1$. Is a_n a Cauchy sequence? Prove or give a counterexample.

6. Define a sequence of real numbers by $x_1 = 2$ and

$$x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}.$$

Prove that x_n is Cauchy. **Hint:** The result of problem number 5 could be useful here.