Homework 1

Analysis

Due: January 22, 2018

1. Give an $\varepsilon-\delta$ proof that for all $x \in[-1,1]$:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

2. Prove that for all $x, y, z \in \mathbb{R}$:

$$
|x-y| \geq||x-z|-| z-y \|
$$

3. Let a_{n} be a sequence in \mathbb{R} satisfying for all $n \in \mathbb{N}$

$$
\left|a_{n+1}-a_{n}\right|<\frac{1}{n}
$$

Is a_{n} a Cauchy sequence? Prove or give a counterexample.
4. Let a_{n} be a sequence in \mathbb{R} satisfying for all $n \in \mathbb{N}$

$$
\left|a_{n+1}-a_{n}\right|<\frac{1}{n^{2}}
$$

Is a_{n} a Cauchy sequence? Prove or give a counterexample.
5. Let a_{n} be a sequence in \mathbb{R}. Suppose there are numbers $k, 0<k<1$ and $C>0$ such that

$$
\left|x_{n+1}-x_{n}\right| \leq C k^{n}
$$

for all $n \geq 1$. Is a_{n} a Cauchy sequence? Prove or give a counterexample.
6. Define a sequence of real numbers by $x_{1}=2$ and

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} .
$$

Prove that x_{n} is Cauchy. Hint: The result of problem number 5 could be useful here.

