Homework 10

Analysis

Due: April 16, 2018

- 1. (a) Construct a smooth function $f_1 : \mathbb{R} \to \mathbb{R}$ that has the following properties:
 - $\overline{\operatorname{supp}(f_1)} = [-1, 1].$
 - $\int_{-\infty}^{\infty} f_1(x) \, dx = 1.$
 - $f_1(x) \ge 0.$
 - (b) Let $n \in \mathbb{N}$. Show that $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = nf_1(nx)$ satisfies:
 - $\overline{\operatorname{supp}(f_n)} = \left[-\frac{1}{n}, \frac{1}{n}\right].$ • $\int_{-\infty}^{\infty} f_n(x) \, dx = 1.$
 - (c) Let g(x) be a smooth function. Prove that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x)g(x) \, dx = g(0).$$

(d) Let $a, b \in \mathbb{R}$ satisfy a < b. Suppose $g \in C^1([a, b])$ satisfies

$$\int_{a}^{b} g(x)f(x)\,dx = 0$$

for all smooth functions $f : \mathbb{R} \to \mathbb{R}$ with compact support contained in [a, b]. Prove that g = 0.

- 2. (a) Let X, Y be complete normed linear spaces. Prove that a linear operator $L: X \mapsto Y$ is bounded if and only if $||L||_{op} < \infty$.
 - (b) Let X, Y be complete normed linear spaces. Prove that if L is a bounded linear operator then for all $x \in X$,

$$||Lx||_Y \le ||L||_{op} ||x||_X.$$

- 3. Let X, Y be complete normed linear spaces. Prove that a linear operator $L: X \mapsto Y$ is continuous at every point in its domain if and only if it is continuous at 0.
- 4. Let $1 and suppose <math>q \in (1, \infty)$ satisfies $\frac{1}{p} + \frac{1}{q} = 1$. Let $v \in L^q([0, 1])$ and define $L : L^p([0, 1]) \mapsto \mathbb{R}$ by

$$L(u) = \int_0^1 u(x)v(x) \, dx$$

Prove that L is a bounded linear operator.

- 5. Let $\delta : C([0,1]) \mapsto \mathbb{R}$ be the linear operator that evaluates a function at the origin: $\delta(f) = f(0)$.
 - (a) If C([0,1]) is equipped with the norm $\|\cdot\|_{\infty}$ prove that δ is bounded and compute its norm.
 - (b) If C([0,1]) is equipped with the norm $\|\cdot\|_{L^1}$ prove that δ is unbounded.

6. Define $K: C([0,1]) \mapsto C([0,1])$ by

$$K(f(x)) = \int_0^1 k(x, y) f(y) \, dy$$

where $k:[0,1]\times [0,1]\mapsto \mathbb{R}$ is continuous and $k(x,y)\geq 0.$ Prove that K is bounded and

$$||K||_{op} = \max_{0 \le x \le 1} \left\{ \int_0^1 k(x, y) \, dy \right\}.$$