1. Let X, Y be normed linear spaces. Prove that if Y is complete the $B(X, Y)$ is a complete space with respect to the operator norm.

2. Fourier Series: With every function $f \in C([0,1])$ we can associate a sequence a_n by
\[f(x) \mapsto a_n = \int_0^1 f(x) \sin(2\pi nx) \, dx. \]
The series a_n is called the Fourier sine series of g, and we will denote the map from $C([0,1])$ to sequences by \mathcal{F}.

(a) Show that \mathcal{F} is a continuous mapping between $(C([0,1]), \| \cdot \|_{L^1})$ and l^∞.
(b) Show that \mathcal{F} is a continuous mapping between $(C([0,1]), \| \cdot \|_{L^2})$ and l^2.

3. l_c is the space of all real valued sequences that have only a finite number of non-zero terms. Recall that c_0 is the space of all sequences $a_n \in \mathbb{R}$ satisfying $\lim_{n \to \infty} a_n = 0$.

(a) If c_0 is equipped with the $\| \cdot \|_\infty$ norm, what is the dual space of c_0? That is, what is the space of bounded linear functionals?
(b) Show that l_c is a vector space over \mathbb{R}.
(c) Show that l_c is dense in the sequence space l^p with respect to the l^p norm.
(d) Show that the closure of l_c in the sup norm is c_0.

4. Consider the mapping defined by
\[f(x) \mapsto Tf(x) = \int_0^\pi \sin(x-y)f(y) \, dy. \]

(a) Show that T maps functions in $C([0,\pi])$ into $C([0,\pi])$.
(b) Show that T is a continuous mapping from $(C([0,1]), \| \cdot \|_{L^1})$ into $(C([0,1]), \| \cdot \|_{L^1})$.
(c) Show that T is a continuous mapping from $(C([0,1]), \| \cdot \|_{L^\infty})$ into $(C([0,1]), \| \cdot \|_{L^\infty})$.

5. Let $\mathcal{A} = \{ u \in C^1([a,b]) : u(a) = \alpha \text{ and } u(b) = \beta \}$. Consider the functional $I : \mathcal{A} \mapsto \mathbb{R}$ defined by
\[I[u] = \int_a^b g(x, u) \sqrt{1 + \left(\frac{du}{dx} \right)^2} \, dx, \]
where g is smooth function.

(a) Calculate the weak form of the Euler-Lagrange equations for this functional.
(b) Calculate the strong form of the Euler-Lagrange equations for this functional.

6. Let $\mathcal{A} = \{ u \in C^1([-1,1]) : u(-1) = 0 \text{ and } u(1) = 1 \}$. Consider the functional $I : \mathcal{A} \mapsto \mathbb{R}$ defined by
\[I[u] = \int_{-1}^1 u(x)^2 \left(1 - \frac{du}{dx} \right)^2 \, dx. \]
Prove that I does not have a minimizer in \mathcal{A}.