Homework 11

Analysis

Due: April 23, 2018

- 1. Let X, Y be normed linear spaces. Prove that if Y is complete the B(X, Y) is a complete space with respect to the operator norm.
- 2. Fourier Series: With every function $f \in C([0,1])$ we can associate a sequence a_n by

$$f(x) \mapsto a_n = \int_0^1 f(x) \sin(2\pi nx) \, dx.$$

The series a_n is called the Fourier sine series of g, and we will denote the map from C([0, 1]) to sequences by \mathcal{F} .

- (a) Show that \mathcal{F} is a continuous mapping between $(C([0,1]), \|\cdot\|_{L^1})$ and l^{∞} .
- (b) Show that \mathcal{F} is a continuous mapping between $(C([0,1]), \|\cdot\|_{L^2})$ and l^2 .
- 3. l_c is the space of all real valued sequences that have only a finite number of non-zero terms. Recall that c_0 is the space of all sequences $a_n \in \mathbb{R}$ satisfying $\lim_{n\to\infty} a_n = 0$.
 - (a) If c_0 is equipped with the $\|\cdot\|_{\infty}$ norm, what is the dual space of c_0 ? That is, what is the space of bounded linear functionals?
 - (b) Show that l_c is a vector space over \mathbb{R} .
 - (c) Show that l_c is dense in the sequence space l^p with respect to the l^p norm.
 - (d) Show that the closure of l_c in the sup norm is c_0 .
- 4. Consider the mapping defined by

$$f(x) \mapsto Tf(x) = \int_0^\pi \sin(x-y)f(y) \, dy.$$

- (a) Show that T maps functions in $C([0,\pi])$ into $C([0,\pi])$.
- (b) Show that T is a continuous mapping from $(C([0,1]), \|\cdot\|_{L^1})$ into $(C([0,1]), \|\cdot\|_{L^1})$.
- (c) Show that T is a continuous mapping from $(C([0,1]), \|\cdot\|_{L^{\infty}})$ into $(C([0,1]), \|\cdot\|_{L^{\infty}})$.

5. Let $\mathcal{A} = \{ u \in C^1([a, b]) : u(a) = \alpha \text{ and } u(b) = \beta \}$. Consider the functional $I : \mathcal{A} \mapsto \mathbb{R}$ defined by

$$I[u] = \int_{a}^{b} g(x, u) \sqrt{1 + \left(\frac{du}{dx}\right)^{2}} \, dx,$$

where q is smooth function.

- (a) Calculate the *weak form* of the Euler-Lagrange equations for this functional.
- (b) Calculate the *strong form* of the Euler-Lagrange equations for this functional.
- 6. Let $\mathcal{A} = \{u \in C^1([-1,1]) : u(-1) = 0 \text{ and } u(1) = 1\}$. Consider the functional $I : \mathcal{A} \mapsto \mathbb{R}$ defined by

$$I[u] = \int_{-1}^{1} u(x)^2 \left(1 - \frac{du}{dx}\right)^2 \, dx.$$

Prove that I does not have a minimizer in \mathcal{A} .