Homework 3

Analysis

Due: February 05, 2018

1. Continuous Mappings: A mapping between metric spaces $f:\left(X, d_{X}\right) \mapsto\left(Y, d_{Y}\right)$ is continuous if $x_{n} \rightarrow x$ in $\left(X, d_{X}\right)$ implies that $f\left(x_{n}\right) \rightarrow f(x)$ in $\left(Y, d_{Y}\right)$.
(a) Propose an $\varepsilon-\delta$ definition for continuity and prove that your definition agrees with the above characterization.
(b) Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right),\left(Z, d_{Z}\right)$ be metric spaces and let $f: X \mapsto Y$, and $g: Y \mapsto Z$ be continuous functions. Show that the composition

$$
h=g \circ f: X \mapsto Z,
$$

defined by $h(x)=g(f(x))$, is also continuous.
(c) Let x_{0} be a given point in a metric space (X, d). Show that the function $f: X \mapsto \mathbb{R}$ defined by $f(x)=d\left(x, x_{0}\right)$ is a continuous function.

2. Completeness and Compactness:

(a) Let (X, d) be a metric space and suppose $K \subset X$ is compact with respect to this metric. Prove that a closed subset of K is compact.
(b) Let (X, d) be a complete metric space, and $Y \subset X$. Prove that (Y, d) is complete if and only if Y is a closed subset of X.
(c) Suppose that x_{n} is a sequence in a compact metric space with the property that every convergent subsequence has the same limit x. Prove that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
(d) Let $f:\left(X, d_{X}\right) \mapsto\left(Y, d_{Y}\right)$ be a continuous mapping and assume X is compact. Prove that the range $f(X)$ is a compact subset of Y.
(e) Let $f:(X, d) \mapsto \mathbb{R}$ be a continuous mapping and assume X is compact. Prove that f is bounded and obtains its maximum and minimum values.

3. Geometry of Norms:

(a) What is the largest r for which the l^{2} circle $\left\{\mathbf{x} \in \mathbb{R}^{2}:\|x\|_{2}=r\right\}$ fits into the the l^{1} unit ball on \mathbb{R}^{2}. What is the "radius" of the largest l^{1} circle $\left\{\mathbf{x}:\|x\|_{1}=r\right\}$ that will fit into the l^{2} unit ball on \mathbb{R}^{2}.
(b) Prove that

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\left(\left|x_{1}-y_{1}\right|^{\frac{1}{3}}+\left|x_{2}-y_{2}\right|^{\frac{1}{3}}\right)^{3}
$$

is not a metric on \mathbb{R}^{2}.
(c) Take the points $\mathbf{x}=(1,0), \mathbf{y}=(0,1)$. Let d be one of the metrics l^{p} metrics for $p \geq 1$, or let it be the corresponding non-metric for $0<p<1$. Show that

$$
\begin{cases}d(\mathbf{x}, \mathbf{y})<\mathbf{d}(\mathbf{x}, 0)+d(0, \mathbf{y}) & \text { if } p>1 \\ d(\mathbf{x}, \mathbf{y})=\mathbf{d}(\mathbf{x}, 0)+d(0, \mathbf{y}) & \text { if } p=1 \\ d(\mathbf{x}, \mathbf{y})>\mathbf{d}(\mathbf{x}, 0)+d(0, \mathbf{y}) & \text { if } p<1\end{cases}
$$

Draw the unit balls centered on the origin, on \mathbf{x}, and on \mathbf{y} in each of the three cases. Notice how they "bend" the wrong way when $p<1$.
(d) Find the shortest distance, in the l^{1} metric on \mathbb{R}^{2}, from the origin to the line $x_{1}+x_{2}=2$. In the l^{∞} metric. In the l^{2} metric. Is the shortest distance in the l^{p} metric a monotone function of p ?
(e) Let $(X,\|\cdot\|)$ be a normed linear space. A set $C \subset X$ is convex if for all $x, y \in C$ and all real numbers $0 \leq t \leq 1$:

$$
t x+(1-t) y \in C
$$

i.e. the line segment joining any two points in the C lies in C. Prove that unit ball with respect to $\|\cdot\|$ is convex.
4. Equivalence of Norms: Let $\mathbf{x} \in \mathbb{R}^{n}$.
(a) Show that

$$
\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\max \left\{\left|x_{1}\right|, \ldots\left\|x_{n}\right\|\right\}
$$

(b) Show that, for all $p, q \geq 1$

$$
\frac{\|\mathbf{x}\|_{p}}{n} \leq\|\mathbf{x}\|_{q} \leq n\|\mathbf{x}\|_{p}
$$

(c) Show that for all $p, q \geq 1$, if $\mathbf{x}_{n} \rightarrow \mathbf{x}$ with respect to the norm $\|\cdot\|_{p}$ then $\mathbf{x}_{n} \rightarrow \mathbf{x}$ with respect to the norm $\|\cdot\|_{q}$.

