Homework 4

Analysis

Due: February 12, 2018

1. Linearity:

(a) Let V be the set of continuous real-valued functions on $[0,1]$ satisfying $\int_{0}^{1} x f(x) d x=0$. Is V a linear space?
(b) Let V be the set of real-valued, twice differentiable functions on $[0,1]$ that are solutions of the differential equation

$$
y^{\prime \prime}(x)+x y(x)=0
$$

Is V a linear space?
(c) Let V be the set of real-valued, twice differentiable functions on $[0,1]$ that are solutions of the differential equation

$$
y^{\prime \prime}(x)+x y(x)=\sin (x)
$$

Is V a linear space?

2. Completeness and Compactness:

(a) Show that \mathbb{R}^{n} is a complete metric space in the l^{p} metric for $p \geq 1$ (including $p=\infty$).
(b) Show that $l^{1}(\mathbb{N}, \mathbb{R})$ is a complete metric space.
(c) Show that the set $\left\{x \in l^{1}(\mathbb{N}, \mathbb{R}):\|x\|_{1} \leq 1\right)$, is not compact with respect to the l^{1} norm.

3. Minimization:

(a) A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=\infty
$$

Explicitly, this condition means that for any $M>0$ there is an $R>0$ such that $\|x\| \geq R$ implies $f(x) \geq M$. Prove that if f is lower semicontinuous with respect to this metric and coercive, then f is bounded from below and attains its infimum.
(b) Let $p: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a polynomial function of two real variables. Suppose that $p(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. Does every such function attain its infimum? Prove or disprove.

4. Matrix Norms:

(a) Let $A \in \mathbb{R}^{n \times n}$. Prove that the following definitions of a matrix norm are identical:

- $\|A\|=\max _{\mathbf{x} \in \mathbb{R}^{n}} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}$.
- $\|A\|=\max _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|$.
- $\|A\|=\max _{\|\mathbf{x}\| \leq 1} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}$.

Note: The norm on \mathbb{R}^{n} does not matter.
(b) Suppose $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with diagonal entries d_{1}, \ldots, d_{n}. Prove that for all $p \in[1, \infty]$:

$$
\|D\|_{p}=\max _{1 \leq i \leq n}\left|d_{i}\right|
$$

(c) Show that for all $A \in \mathbb{R}^{n \times n}$ that

$$
\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2}
$$

(d) For a matrix $A \in \mathbb{R}^{n \times n}$ with entries $a_{i j}$ show that

- $\|A\|_{\infty} \leq \max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$.
- $\|A\|_{1} \leq \max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$.
- Show that there always exists $x \in \mathbb{R}^{n}$ for which $\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$. Deduce that $\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$.
- Prove in a similar way $\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$.

5. Sequence spaces: $c_{0} \subset \mathbb{R}^{\mathbb{N}}$ is the set of real valued sequences $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$.
(a) If $x, y \in c_{0}$, show that $x+y \in c_{0}$.
(b) Show that $l^{p}(\mathbb{N}, \mathbb{R}) \subset c_{0}$ for all $1 \leq p<\infty$ and that the containment is strict.
(c) Show the c_{0} is complete in the l^{∞} norm.
