Homework 4

Analysis

Due: February 12, 2018

1. Linearity:

- (a) Let V be the set of continuous real-valued functions on [0, 1] satisfying $\int_0^1 x f(x) dx = 0$. Is V a linear space?
- (b) Let V be the set of real-valued, twice differentiable functions on [0, 1] that are solutions of the differential equation

$$y''(x) + xy(x) = 0.$$

Is V a linear space?

(c) Let V be the set of real-valued, twice differentiable functions on [0,1] that are solutions of the differential equation

$$y''(x) + xy(x) = \sin(x).$$

Is V a linear space?

2. Completeness and Compactness:

- (a) Show that \mathbb{R}^n is a complete metric space in the l^p metric for $p \ge 1$ (including $p = \infty$).
- (b) Show that $l^1(\mathbb{N}, \mathbb{R})$ is a complete metric space.
- (c) Show that the set $\{x \in l^1(\mathbb{N}, \mathbb{R}) : ||x||_1 \leq 1\}$, is not compact with respect to the l^1 norm.

3. Minimization:

(a) A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ is coercive if

$$\lim_{\|x\| \to \infty} f(x) = \infty.$$

Explicitly, this condition means that for any M > 0 there is an R > 0 such that $||x|| \ge R$ implies $f(x) \ge M$. Prove that if f is lower semicontinuous with respect to this metric and coercive, then f is bounded from below and attains its infimum.

(b) Let $p : \mathbb{R}^2 \to \mathbb{R}$ be a polynomial function of two real variables. Suppose that $p(x, y) \ge 0$ for all $x, y \in \mathbb{R}$. Does every such function attain its infimum? Prove or disprove.

4. Matrix Norms:

- (a) Let $A \in \mathbb{R}^{n \times n}$. Prove that the following definitions of a matrix norm are identical:
 - $||A|| = \max_{\mathbf{x} \in \mathbb{R}^n} \frac{||A\mathbf{x}||}{||\mathbf{x}||}.$
 - $||A|| = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||.$

•
$$||A|| = \max_{\|\mathbf{x}\| \le 1} \frac{||A\mathbf{x}||}{\|\mathbf{x}\|}$$

Note: The norm on \mathbb{R}^n does not matter.

(b) Suppose $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with diagonal entries d_1, \ldots, d_n . Prove that for all $p \in [1, \infty]$:

$$||D||_p = \max_{1 \le i \le n} |d_i|.$$

(c) Show that for all $A \in \mathbb{R}^{n \times n}$ that

$$||A||_{\infty} \le \sqrt{n} ||A||_2.$$

- (d) For a matrix $A \in \mathbb{R}^{n \times n}$ with entries a_{ij} show that
 - $||A||_{\infty} \le \max_{i} \sum_{j=1}^{n} |a_{ij}|.$ • $||A||_{1} \le \max_{j} \sum_{i=1}^{n} |a_{ij}|.$
 - Show that there always exists $x \in \mathbb{R}^n$ for which $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$. Deduce that $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$.
 - Prove in a similar way $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|.$

5. Sequence spaces: $c_0 \subset \mathbb{R}^{\mathbb{N}}$ is the set of real valued sequences $\{x_n\}$ such that $\lim_{n \to \infty} x_n = 0$.

- (a) If $x, y \in c_0$, show that $x + y \in c_0$.
- (b) Show that $l^p(\mathbb{N},\mathbb{R}) \subset c_0$ for all $1 \leq p < \infty$ and that the containment is strict.
- (c) Show the c_0 is complete in the l^{∞} norm.