Homework 5

Analysis

Due: February 23, 2018

1. Sequence Spaces:

(a) Given $1 \leq p<q<\infty$ give an example of a sequence x_{n} which is in l^{q} but not in l^{p}.
(b) Given $1 \leq p<q<\infty$ prove that $l^{p} \subset l^{\infty}$.
(c) Given $1 \leq p<q<\infty$ prove that $l^{p} \subset l^{q}$.
(d) Let \mathbf{x} be a real valued sequence with components x_{n}. Suppose for q satisfying $1 \leq q<\infty$ we know that for every $\mathbf{y} \in l^{q}$ with components y_{i} the sequence $x_{i} y_{i}$ is absolutely summable, and

$$
\left|\sum_{i=1}^{\infty} x_{i} y_{i}\right| \leq C\|y\|_{l q}
$$

for some constant C. Show that $x \in l^{p}$ where $p=q /(q-1)$.

2. Young's Inequality:

(a) Let f be a continuous strictly increasing function on $[0, \infty)$ with $f(0)=0$. Prove that for $a, b>0$:

$$
a b \leq \int_{0}^{a} f(t) d t+\int_{0}^{b} f^{-1}(t) d t .
$$

(b) Prove that for all $a, b \geq 0$:

$$
\exp (a)+(1+b) \ln (1+b) \geq(1+a)(1+b)
$$

3. Hölder's and Minkowski's inequalities on spaces of functions:

(a) If $f, g \in C([0,1])$, show that

$$
\int_{0}^{1}|f(t) g(t)| d t \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

with $1 / p+1 / q=1,1<p<\infty$, where

$$
\|h\|_{L^{m}}=\left(\int_{0}^{1}|h(t)|^{m} d t\right)^{1 / m}
$$

(b) If $f, g \in C([0,1])$ and $1<p<\infty$, prove that

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} .
$$

4. Function Spaces:

(a) Let $f_{n} \in C([a, b])$ be a sequence of functions converging uniformly to a function f. Show that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

(b) Consider the space of continuously differentiable functions:

$$
C^{1}([a, b])=\left\{f:[a, b] \mapsto \mathbb{R}: f, f^{\prime} \in C([a, b])\right\}
$$

with the C^{1} norm:

$$
\|f\|_{C^{1}}=\sup _{a \leq x \leq b}|f(x)|+\sup _{a \leq x \leq b}\left|f^{\prime}(x)\right|
$$

Prove that $C^{1}([a, b])$ is a Banach space.
(c) Show that the space $C([a, b])$ with the L^{1} norm $\|\cdot\|_{L^{1}}$ defined by

$$
\|f\|_{L^{1}}=\int_{a}^{b}|f(x)| d x
$$

is incomplete. Show that if $f_{n} \rightarrow f$ with respect to $\|\cdot\|_{L^{\infty}}$, then $f_{n} \rightarrow f$ with respect to $\|\cdot\|_{L^{1}}$.

5. Lebesgue Spaces:

(a) For each of the following functions f, find the set of $p \in[1, \infty]$ for which $f \in L_{0}^{p}$ on the given interval.

- $f(t)=e^{-t}$ on $[0, \infty)$.
- $f(t)=1 / t$ on $[1, \infty)$.
- $f(t)=1 / \sqrt{t}$ on $(0,1]$.
- $f(t)=\ln (t)$ on $(0,3]$.
- $f(t)=1 / \sqrt{t}$ on $(0, \infty)$.
- $f(t)=\left\{\begin{array}{ll}|t|^{-1 / 2} & |t| \leq 1 \\ 2 t^{-2} & |t|>1\end{array}\right.$ on $(0, \infty)$.
(b) For each of the following functions f, find the set of $\alpha \in \mathbb{R}$ for which $f \in L_{0}^{p}$ on the given interval, taking i) $p=1$, ii) $p=2$, iii) $p=\infty$.
- $f(t)=t^{\alpha}$ on $(0,1]$.
- $f(t)=t^{\alpha}$ on $[1, \infty)$.
- $f(t)=t^{\alpha}$ on $(0, \infty)$.
- $f(t)=\left\{\begin{array}{ll}t^{\alpha} & 0<t \leq 1 \\ t^{-\alpha} & 1<t<\infty\end{array}\right.$ on [1, $\left.\infty\right)$.
(c) Is there a function f on $(0, \infty)$ which belongs to L_{0}^{1} but not to L_{0}^{2}. Is there one that belongs to L_{0}^{2} but not to L_{0}^{1} ?
(d) Is there a function f on $(0,1)$ which belongs to L_{0}^{1} but not to L_{0}^{2}. Is there one that belongs to L_{0}^{2} but not to L_{0}^{1} ?

