Homework 7

Analysis

Due: March 19, 2018

1. Displacement of a String: A string of length L is clamped at its endpoints. It is under tension $T>0$ and is subject to a transverse force per unit length $\tau(x) \geq 0$. The equilibrium displacement $u(x)$ then satisfies the following boundary value problem

$$
\begin{aligned}
T u^{\prime \prime}(x) & =-\tau(x) \\
u(0) & =u(L)=0
\end{aligned}
$$

Define the energy norm for this problem by:

$$
\|f\|_{E}=\sqrt{\int_{0}^{L}\left[f^{\prime}(x)\right]^{2} d x}
$$

(a) Assuming there exists a smooth solution $u(x)$ to this problem, prove that

$$
\|u\|_{E}=\sqrt{\frac{1}{T} \int_{0}^{L} \tau(x) u(x) d x}
$$

(b) Assuming there exists a smooth solution $u(x)$ to this problem, find upper bounds for the maximum displacement and also the total energy $\mathcal{E}[u]=T\|u\|_{E}^{2} / 2$ in terms of the tension T, the length L of the string, and the root-mean applied forcing:

$$
\bar{\tau}=\sqrt{\frac{1}{L} \int_{0}^{L}[\tau(x)]^{2} d x}
$$

2. Heat Equation: Assume that the heat equation, and the associate boundary conditions

$$
\begin{aligned}
\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial u}{\partial t} \\
u(x, 0) & =u_{0}(x) \\
u(0, t) & =u(L, t)=0
\end{aligned}
$$

has a smooth solution $u(x, t)$ for all smooth initial conditions $u_{0}(x)$.
(a) Show that the "spatial" L^{2} and energy norms, decay as a function of time, and use this to prove the uniqueness of solutions of the heat equation.
(b) Show that there is a constant C such that

$$
\|u(\cdot, t)\|_{L^{2}} \leq\left\|u_{0}\right\|_{L^{2}} e^{-C t}
$$

(c) Show that the map $S_{t}: u_{0} \mapsto u(x, t)$ is a continuous map from $L^{2}([0, L])$ into itself for all $t \geq 0$.
3. Wave Equation: Let $b>0$. The wave equation with dissipation is given by

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}+b \frac{\partial u}{\partial t}
$$

with the initial boundary conditions:

$$
\begin{aligned}
u(x, 0) & =u_{0}(x) \\
u_{t}(x, 0) & =v_{0}(x) \\
u(0, t) & =u(L, t)=0 .
\end{aligned}
$$

Show the uniqueness of smooth solutions of this equation by constructing your own appropriate energy norm.

4. Weierstrass Approximation Theorem: Let

$$
p_{n}(x)= \begin{cases}\left(1-\frac{x^{2}}{4}\right)^{n}, & -2 \leq x \leq 2 \\ 0, & x<-2 \text { or } x>2\end{cases}
$$

$c_{n}=\int_{-\infty}^{\infty} p_{n}(x) d x$ and define $g_{n}(x)$ by $g_{n}(x)=\frac{1}{c_{n}} p_{n}(x)$.
(a) Let f be a continuous function on \mathbb{R} compactly supported on $[-2,2]$. Prove that $f_{n}=g_{n} * f$ is a polynomial on $[-1,1]$.
(b) Prove that g_{n} is a sequence of averaging kernels.
(c) Prove that polynomials are dense in $C([-1,1])$.
(d) Prove that $C([-1,1])$ is separable, i.e. it is a dense countable subset.

