Homework 8

Analysis

Due: March 26, 2018

1. Convolutions:

(a) Let f, g be smooth functions with compact support. Let A be the closure of the set

 ${x+y: x \in \operatorname{supp}(f) \text{ and } y \in \operatorname{supp}(g)}$

Prove that $\operatorname{supp}(f * g) \subset A$.

- (b) Draw a picture of a smooth function f on \mathbb{R} satisfying
 - f has compact support.
 - For all $x \in \mathbb{R}$, $0 \le f(x) \le 1$.

Draw a picture of f * f.

- (c) Let $f = \chi_{[-1,1]}$. Find f * f without calculating anything. I.e, try to just draw f * f to obtain the formula for f * f.
- (d) Let $f, g \in C(\mathbb{R})$ be smooth functions with compact support. Prove that

$$||f * g||_{\infty} \le ||f||_{L^p} ||g||_{L^q},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

2. Equivalence Classes:

- (a) In a metric space (M, d), say that $x \sim y$ if d(x, y) < 1. Is this an equivalence relation?
- (b) Let X be the set of 2×2 complex valued matrices. Say that $A \sim B$ if $B = CAC^{-1}$ for some invertible matrix C. Prove that \sim is an equivalence relation. Prove that the function f(A) =trace(A) is defined unambiguously on the set of equivalence classes as well.

3. Abstract Completions:

- (a) Recall, a metric space (X, d) is called bounded if there is a K > 0 such that $d(x, y) \le K$ for all $x, y \in X$. Let (X, d) be bounded and suppose that (X, d) and (X', d') are isometric. Show that (X', d') is bounded.
- (b) Let (X, d) be metric space with completion (\tilde{X}, \tilde{d}) . Suppose that (X', d') is a complete metric space, and suppose that there is an isometry $F : X \mapsto X'$ whose range F(X) is dense in X'. Prove that (X', d') and (\tilde{X}, \tilde{d}) are isometric.
- (c) Prove that

$$d(x,y) = \frac{|x-y|}{\sqrt{(1+x^2)(1+y^2)}}$$

defines a metric on \mathbb{R} . Show that \mathbb{R} is not complete in this metric. Find the completion.